Navigation Links
MIT’s implantable device offers continuous cancer monitoring

CAMBRIDGE, Mass.--Surgical removal of a tissue sample is now the standard for diagnosing cancer. Such procedures, known as biopsies, are accurate but only offer a snapshot of the tumor at a single moment in time.

Monitoring a tumor for weeks or months after the biopsy, tracking its growth and how it responds to treatment, would be much more valuable, says Michael Cima, MIT professor of materials science and engineering, who has developed the first implantable device that can do just that.

Cima and his colleagues recently reported that their device successfully tracked a tumor marker in mice for one month. The work is described in a paper published online in the journal Biosensors & Bioelectronics in April.

Such implants could one day provide up-to-the-minute information about what a tumor is doing whether it is growing or shrinking, how it's responding to treatment, and whether it has metastasized or is about to do so.

"What this does is basically take the lab and put it in the patient," said Cima, who is also an investigator at the David H. Koch Institute for Integrative Cancer Research at MIT.

The devices, which could be implanted at the time of biopsy, could also be tailored to monitor chemotherapy agents, allowing doctors to determine whether cancer drugs are reaching the tumors. They can also be designed to measure pH (acidity) or oxygen levels, which reveal tumor metabolism and how it is responding to therapy.

With current tools for detecting whether a tumor has spread, such as biopsy, by the time you have test results it's too late to prevent metastasis, said Cima.

"This is one of the tools we're going to need if we're going to turn cancer from a death sentence to a manageable disease," he said.

In the Biosensors & Bioelectronics study, human tumors were transplanted into the mice, and the researchers then used the implants to track levels of human chorionic gonadotropin, a hormone produced by human tumor cells.

The cylindrical, 5-millimeter implant contains magnetic nanoparticles coated with antibodies specific to the target molecules. Target molecules enter the implant through a semipermeable membrane, bind to the particles and cause them to clump together. That clumping can be detected by MRI (magnetic resonance imaging).

The device is made of a polymer called polyethylene, which is commonly used in orthopedic implants. The semipermeable membrane, which allows target molecules to enter but keeps the magnetic nanoparticles trapped inside, is made of polycarbonate, a compound used in many plastics.

Cima said he believes an implant to test for pH levels could be commercially available in a few years, followed by devices to test for complex chemicals such as hormones and drugs.


Contact: Elizabeth Thomson
Massachusetts Institute of Technology

Related biology news :

1. NC State finds new nanomaterial could be breakthrough for implantable medical devices
2. Project aims to reduce complications, multiple surgeries with biodegradable implantable devices
3. Chemical found in medical devices impairs heart function
4. Device protects transplanted pancreatic cells from the immune system
5. NIST-Cornell team builds worlds first nanofluidic device with complex 3-D surfaces
6. BIO-key(R) Granted Patent for Trusted Biometric Device Security Solution
7. Futronic Launches FS22 Fingerprint Access Control Device
8. Linking Proteins, Wires, Dots, and Molecules into Useful Devices
9. Caltech engineers build firast-ever multi-input plug-and-play synthetic RNA device
10. Nanodiamond drug device could transform cancer treatment
11. Kount Receives Patent for Device Fingerprinting
Post Your Comments:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted ... quarter of 2015 The gross margin was 49% (27) ... the operating margin was 40% (-13) Earnings per share ... operations was SEK 249.9 M (21.2) , Outlook   ... M. The operating margin for 2016 is estimated to ...
(Date:4/26/2016)... -- Research and Markets has announced the ...  report to their offering.  , ,     (Logo: ... forecast the global multimodal biometrics market to grow ... 2016-2020.  Multimodal biometrics is being implemented ... healthcare, BFSI, transportation, automotive, and government for controlling ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... 23, 2016 , ... Charm Sciences, Inc. is pleased to ... AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of the ... Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... ... 23, 2016 , ... In a new case report published today in STEM ... who developed lymphedema after being treated for breast cancer benefitted from an injection of ... dealing with this debilitating, frequent side effect of cancer treatment. , Lymphedema ...
(Date:6/23/2016)... , June 23, 2016 ... Hematology Review, 2016;12(1):22-8 ... , the peer-reviewed journal from touchONCOLOGY, Andrew ... escalating cost of cancer care is placing an ... result of expensive biologic therapies. With the patents ...
Breaking Biology Technology: