Navigation Links
MDC researchers link protein tether to touch perception
Date:2/18/2010

Humans and animals are able to perceive even the slightest vibration and touch of the skin. Mechanosensitive ion channels play a crucial role in the mediation of these sensations. Ion channels are pores in the cell membrane which are highly responsive to external signals. Mechanosensitive ion channels open at the slightest vibration and allow ions (electrically charged particles), to cross the cell membrane, which causes an electrical current until the channel closes again. Until now it was unclear how the ion channels were opened. Dr. Jing Hu and Professor Gary Lewin of the Max Delbrck Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered the presence of a protein filament that causes the ion channels to open and shut like a tethered gate (EMBO Journal,Vol. 29, No. 4, pp 855-867; doi: 10.1038/emboj.2009.398)*.

In their study, the researchers showed that the opening and closing of ion channels literally "hangs by a thread". This protein thread or filament, as Dr. Hu and Professor Lewin demonstrated, is synthesized by the mechanosensitive endings of cutaneous neurons and is probably an integral part of the mechanosensitive mechanism.

The thread is firmly tethered in the extracellular matrix (ECM), the connective protein "glue" that helps to hold cells together. However, the filament is located so close to the mechanosensitive ion channels that it can probably directly open them. The filaments were found to be 100 nanometers (nm) long (1 nanometer is equivalent to one billionth of a meter) and may link the ion channels of the cell membrane to the ECM at mechanosensitive sensory endings of the skin in mice.

The researchers demonstrated both with neuronal cultures and experiments using the isolated skin with receptors attached that the opening of mechanosensitive ion channels upon slight touch requires the 100nm protein filament. The stretching of sensory membranes by small mechanical stimuli does not appear to play any significant role in touch receptors.

When the researchers cleaved the filament with specific enzymes, thus cutting the link between the sensory ending and the extracellular matrix (ECM), the neurons were rendered completely insensitive to mechanical stimulation and touch. However, if the researchers waited twelve hours the filaments were again synthesized by the sensory cells and they became mechanosensitive once more.

"This means that touch can be perceived only when the protein filament is present. The filament renders the mechanosensitive ion channel highly sensitive to force and may even directly participate in opening and closing the channel " Professor Lewin explained.

However, this does not apply to the perception of mechanical pain. "Pain receptors" he emphasized, "are not dependent on this filament." According to the neurobiologists, the protein filaments may in the future be of great interest to medical research. Advancements in this area could help people whose sense of touch is impaired due to old age, improving their general well-being and mobility. There are also common syndromes where there is oversensitivity to touch, in the case of neuropathic pain where the slightest touch of feather may be perceived as painful, again accessing the tether may help in alleviating the symptoms.


'/>"/>

Contact: Barbara Bachtler
bachtler@mdc-berlin.de
49-309-406-3896
Helmholtz Association of German Research Centres
Source:Eurekalert

Related biology news :

1. Researchers identify proteins involved in new neurodegenerative syndrome
2. Texas researchers and educators head for Antarctica
3. MGH researchers describe new way to identify, evolve novel enzymes
4. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
5. U of MN researchers discover noninvasive diagnostic tool for brain diseases
6. U of Minnesota researchers discover noninvasive diagnostic tool for brain diseases
7. Researchers discover new strategies for antibiotic resistance
8. Researchers find new taste in fruit flies: carbonated water
9. Binghamton University researchers investigate evolving malaria resistance
10. UIC researchers find promising new targets for antibiotics
11. Researchers develop simple method to create natural drug products
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... April 11, 2017 NXT-ID, Inc. (NASDAQ: ... company, announces the appointment of independent Directors Mr. Robin ... its Board of Directors, furthering the company,s corporate governance and ... Gino Pereira ... look forward to their guidance and benefiting from their considerable ...
(Date:4/5/2017)... -- The Allen Institute for Cell Science today announces the ... and dynamic digital window into the human cell. The ... of deep learning to create predictive models of cell ... growing suite of powerful tools. The Allen Cell Explorer ... available resources created and shared by the Allen Institute ...
(Date:4/5/2017)... -- KEY FINDINGS The global market for ... of 25.76% during the forecast period of 2017-2025. The ... the growth of the stem cell market. ... INSIGHTS The global stem cell market is segmented on ... stem cell market of the product is segmented into ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... , ... October 12, 2017 , ... ... Vilnius, Lithuania, announced today that they have entered into a multiyear collaboration to ... provide CRISPR researchers with additional tools for gene editing across all applications. , ...
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... Surgical Wound Market with the addition of its newest module, US Hemostats & ... market for thrombin hemostats, absorbable hemostats, fibrin sealants, synthetic sealants and biologic sealants ...
(Date:10/12/2017)... (PRWEB) , ... October 12, ... ... ) has launched Rosalindâ„¢, the first-ever genomics analysis platform specifically designed for ... complexity. Named in honor of pioneering researcher Rosalind Franklin, who made a ...
(Date:10/11/2017)... ... October 11, 2017 , ... The CRISPR-Cas9 ... enabling overexpression experiments and avoiding the use of exogenous expression plasmids. The simplicity ... for performing systematic gain-of-function studies. , This complement to loss-of-function studies, such ...
Breaking Biology Technology: