Navigation Links
Loss of eastern hemlock will affect forest water use
Date:5/9/2013

The loss of eastern hemlock from forests in the Southern Appalachian region of the United States could permanently change the area's hydrologic cycle, reports a new study by U.S. Forest Service scientists at the Coweeta Hydrologic Laboratory (Coweeta) located in Otto, North Carolina, published online in the journal Ecological Applications and available now in preprint format.

"The hemlock woolly adelgid, an exotic invasive insect, has caused widespread hemlock mortality," says Steven Brantley, a post-doctoral researcher at Coweeta and lead author of the paper. "Hemlock decline is expected to have a major impact on forest processes, including transpiration."

Transpiration describes the loss of water from plant leaves or needles. Coweeta researchers estimated changes in transpiration at the forest-level since hemlock woolly adelgid infestation by monitoring tree water use and changes in forest composition from 2004 to 2011.

The four studied stands were once dominated by eastern hemlock trees, and are located in the Coweeta watersheds. Because of its dense evergreen foliage and dominance in riparian and cove habitats, eastern hemlock plays an important role in the area's water cycle, regulating stream flow year round.

The loss of hemlock from southern Appalachian forests can be compared to the loss of American chestnut from eastern forests, which became functionally extinct after the introduction of an exotic fungus in the early 20th century. Changes in local forest hydrology from the loss of eastern hemlock will largely depend on which species replace it.

Rhododendron, a woody evergreen shrub common in southern Appalachian forests, is one of the species replacing eastern hemlock trees. Although rhododendron is evergreen, it has lower leaf area than hemlock, and thus transpiration in rhododendron-dominated forest stands is lower than in previously-healthy hemlock forests. Most of the other species replacing eastern hemlock trees are deciduous, such as sweet birch, which unlike the evergreen rhododendron and eastern hemlock, do not transpire during the winter. Sweet birch trees also have a much higher transpiration rate than eastern hemlock trees during the growing season.

"The cumulative effect of these species changes will probably mean permanent changes in seasonal transpiration patterns," says Brantley. "In the growing season, transpiration rates will likely rise, leading to lower stream flow in the summer. However, transpiration rates in the winter will be reduced, which could cause increased winter stream discharge."

Whatever species eventually replace eastern hemlock, there will be important long-term implications for riparian habitats beyond stream discharge. Without the shade provided by eastern hemlock, stream temperatures could rise, threatening aquatic animals like eastern brook trout that require cold water for survival. The loss of eastern hemlock will not only affect the animal and plant communities in riparian habitats, but ecosystem function throughout these areas.


'/>"/>

Contact: Steven Brantley
sbrantle@umn.edu
828-524-2128 x116
USDA Forest Service ‑ Southern Research Station
Source:Eurekalert

Related biology news :

1. Oceanographer Sylvia Earle kicks off Northeasterns Sustaining Coastal Cities Conference
2. Sustaining Coastal Cities Conference at Northeastern University
3. Warmest spring on record causes earliest flowering ever observed in eastern U.S.
4. In the Eastern US, spring flowers keep pace with warming climate
5. University of Tennessee study predicts extreme climate in Eastern US
6. Darwin discovered to be right: Eastern Pacific barrier is virtually impassable by coral species
7. Syracuse University study finds autumn advantage for invasive plants in eastern United States
8. Death of hemlock trees yields new life for hardwood trees, but at what cost to the ecosystem?
9. Organic vapors affect clouds leading to previously unidentified climate cooling
10. Pesticide combination affects bees ability to learn
11. NSF grant boosts research on proteins that affect fertility
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)... Dec. 15, 2016 Advancements in ... health wellness and wellbeing (HWW), and security ... three new passenger vehicles begin to feature ... recognition, heart beat monitoring, brain wave monitoring, ... monitoring, and pulse detection. These will be ...
(Date:12/12/2016)... , Dec. 12, 2016  Researchers at ... possibilities for graphene by combining the material with ... highly sensitive pressure detector able to sense pulse, ... a small spider.  The research ... can be read here:  http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/7/2016)... India , December 7, 2016 According to a ... Machine Learning), Software Tool (Facial Expression, Voice Recognition), Service, Application Area, End User, ... is estimated to grow from USD 6.72 Billion in 2016 to USD 36.07 ... Continue Reading ... ...
Breaking Biology News(10 mins):
(Date:1/18/2017)... ... 18, 2017 , ... Executive search firm Slone Partners proudly ... to the advancement of the clinical trials segment. Hosted in Miami, this conference ... planning and management. , As executive talent specialists in the industries central ...
(Date:1/18/2017)... ... 18, 2017 , ... Whitehouse Labs has furthered its efforts ... Inc. (AMRI), the scientific staff dedicated to Extractables / Leachables & Impurities has ... in 2017. Extractable & Leachable evaluations have become increasingly more vital to successful ...
(Date:1/18/2017)... ... January 18, 2017 , ... ... announced that it has submitted a 510(k) to the FDA, requesting clearance of ... patent-pending functional electrical stimulation (FES) technology. , The submission marks a major ...
(Date:1/18/2017)... ... January 18, 2017 , ... DrugDev ... Summit for Clinical Ops Executives (Hyatt Regency Miami, January 24-26). DrugDev will join ... clinical research issues such as trial performance metrics, patient enrollment diversity, protocol optimization, ...
Breaking Biology Technology: