Navigation Links
Looking into a fly's eyes
Date:12/6/2012

This press release is available in German.

Fine venules, thin branches of nerve tracts - thanks to the ultramicroscope developed at the Bioelectronics Department of the Institute for Solid-State Electronics at the Vienna University of Technology, the tiniest details of biological tissues can be represented in 3D. Laser beams are used to look inside flies, mice, or medical tissue samples. The laser technology and the optics in the device were developed by Saideh Saghafi. Using various optical tricks, she has managed to turn a laser beam into an extremely thin two-dimensional laser surface, which can be shone through samples layer by layer. She has now been awarded a major optics prize for this work.

Tissue made transparent

Biological tissue tends to be opaque, with light being scattered at the interfaces between different materials. This is why we cannot see through thick fog: each individual floating droplet of fog scatters the light, so all we can see is a blanket of white.

In order to represent the internal structure of biological tissue, it must first be made transparent to laser beams. 'The sample is treated first of all: any water it contains is replaced with a fluid with different optical properties, and this enables laser beams to penetrate deep into the sample,' explains Saideh Saghafi. Together with her colleagues at the department of Prof. Hans Ulrich Dodt at the Vienna University of Technology, she is creating images of previously unmatched quality, which are providing important information for medical research. The novel ultramicroscope is also ideal for the investigation and 3D representation of human tumours from a pathology perspective.

Ultra-thin light surfaces

Optical tricks are initially used to convert a conventional round laser beam into an elliptical beam, which is transformed in turn into a thin layer of light. 'The surface of the laser light, which we generate with our lenses, is only around 1.5 micrometres thick,' says Saghafi. Stimulated by the laser light, an extremely thin layer of the sample begins to fluoresce - and this light can be picked up with a camera. The basic idea behind ultramicroscopy has been applied at the Vienna University of Technology for some years now, but Saghafi's thin laser layers have made a further decisive improvement in terms of microscope precision.

Laser light is shone through the sample layer by layer, with an image being taken each time. These are used to construct a complete 3D model of the sample on the computer. Detailed images emerge of tiny fruit files and the complex network of neurons in the brains of mice. 'If we didn't shine the laser surface through the sample, it would be a case of having to cut the sample into thin layers and then put these under a microscope one at a time. Of course, this approach could never match the accuracy we achieve with our ultramicroscope,' explains Saideh Saghafi.

Prize for outstanding scientific achievement

Edmund Optics, a major manufacturer of optical equipment, recently presented a series of awards for the best scientific work in the field of optics. From the 750 or so entries, the three most innovative and useful from a technical perspective were selected. Saideh Saghafi featured among the work receiving awards for 2012 with her light surface technology. The prize money is paid in the form of valuable optical equipment, which should help ultramicroscopy improve still further as a discipline at the Vienna University of Technology.


'/>"/>

Contact: Florian Aigner
florian.aigner@tuwien.ac.at
43-158-801-41027
Vienna University of Technology
Source:Eurekalert  

Related biology news :

1. Leaner Navy looking at future technology, fleet size and sequestration
2. Looking for the next American hyrax?
3. Better looking birds have more help at home with their chicks
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Looking into a fly's eyes
(Date:6/27/2016)... Research and Markets has announced the addition ... to their offering. The report ... to grow at a CAGR of 12.28% during the period 2016-2020. ... in-depth market analysis with inputs from industry experts. The report covers ... The report also includes a discussion of the key vendors operating ...
(Date:6/22/2016)... American College of Medical Genetics and Genomics was once again ... of the fastest-growing trade shows during the Fastest 50 Awards ... Las Vegas . Winners are ... of the following categories: net square feet of paid exhibit ... 2015 ACMG Annual Meeting was ranked 23 out of 50 ...
(Date:6/22/2016)... June 22, 2016   Acuant , ... verification solutions, has partnered with RightCrowd ® ... for Visitor Management, Self-Service Kiosks and Continuous ... that add functional enhancements to existing physical ... and venues with an automated ID verification ...
Breaking Biology News(10 mins):
(Date:6/27/2016)...  Global demand for enzymes is forecast to ... $7.2 billion.  This market includes enzymes used in ... production, animal feed, and other markets) and specialty ... and beverages will remain the largest market for ... products containing enzymes in developing regions.  These and ...
(Date:6/27/2016)... ... , ... Parallel 6 , the leading software as a service (SaaS) ... Virtual Patient Encounter CONSULT module which enables both audio and video telemedicine communication between ... Using the CONSULT module, patients and physicians can schedule a face to face virtual ...
(Date:6/27/2016)... , June 27, 2016   Ginkgo Bioworks , ... industrial engineering, was today awarded as one of ... of the world,s most innovative companies. Ginkgo Bioworks ... for the real world in the nutrition, health ... work directly with customers including Fortune 500 companies ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita ... miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the subject of ... now. , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue ...
Breaking Biology Technology: