Navigation Links
Looking into a fly's eyes

This press release is available in German.

Fine venules, thin branches of nerve tracts - thanks to the ultramicroscope developed at the Bioelectronics Department of the Institute for Solid-State Electronics at the Vienna University of Technology, the tiniest details of biological tissues can be represented in 3D. Laser beams are used to look inside flies, mice, or medical tissue samples. The laser technology and the optics in the device were developed by Saideh Saghafi. Using various optical tricks, she has managed to turn a laser beam into an extremely thin two-dimensional laser surface, which can be shone through samples layer by layer. She has now been awarded a major optics prize for this work.

Tissue made transparent

Biological tissue tends to be opaque, with light being scattered at the interfaces between different materials. This is why we cannot see through thick fog: each individual floating droplet of fog scatters the light, so all we can see is a blanket of white.

In order to represent the internal structure of biological tissue, it must first be made transparent to laser beams. 'The sample is treated first of all: any water it contains is replaced with a fluid with different optical properties, and this enables laser beams to penetrate deep into the sample,' explains Saideh Saghafi. Together with her colleagues at the department of Prof. Hans Ulrich Dodt at the Vienna University of Technology, she is creating images of previously unmatched quality, which are providing important information for medical research. The novel ultramicroscope is also ideal for the investigation and 3D representation of human tumours from a pathology perspective.

Ultra-thin light surfaces

Optical tricks are initially used to convert a conventional round laser beam into an elliptical beam, which is transformed in turn into a thin layer of light. 'The surface of the laser light, which we generate with our lenses, is only around 1.5 micrometres thick,' says Saghafi. Stimulated by the laser light, an extremely thin layer of the sample begins to fluoresce - and this light can be picked up with a camera. The basic idea behind ultramicroscopy has been applied at the Vienna University of Technology for some years now, but Saghafi's thin laser layers have made a further decisive improvement in terms of microscope precision.

Laser light is shone through the sample layer by layer, with an image being taken each time. These are used to construct a complete 3D model of the sample on the computer. Detailed images emerge of tiny fruit files and the complex network of neurons in the brains of mice. 'If we didn't shine the laser surface through the sample, it would be a case of having to cut the sample into thin layers and then put these under a microscope one at a time. Of course, this approach could never match the accuracy we achieve with our ultramicroscope,' explains Saideh Saghafi.

Prize for outstanding scientific achievement

Edmund Optics, a major manufacturer of optical equipment, recently presented a series of awards for the best scientific work in the field of optics. From the 750 or so entries, the three most innovative and useful from a technical perspective were selected. Saideh Saghafi featured among the work receiving awards for 2012 with her light surface technology. The prize money is paid in the form of valuable optical equipment, which should help ultramicroscopy improve still further as a discipline at the Vienna University of Technology.


Contact: Florian Aigner
Vienna University of Technology

Related biology news :

1. Leaner Navy looking at future technology, fleet size and sequestration
2. Looking for the next American hyrax?
3. Better looking birds have more help at home with their chicks
Post Your Comments:
Related Image:
Looking into a fly's eyes
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:4/14/2016)... , April 14, 2016 ... Malware Detection, today announced the appointment of Eyal ... new role. Goldwerger,s leadership appointment comes at ... heels of the deployment of its platform at several ... biometric technology, which discerns unique cognitive and physiological factors, ...
(Date:3/31/2016)... -- Genomics firm Nabsys has completed a financial  restructuring under ... M.D., who returned to the company in October 2015. ... including Chief Technology Officer, John Oliver , Ph.D., ... Vice President of Software and Informatics, Michael Kaiser ... Bready served as CEO of Nabsys from 2005-2014 and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , the leading software as ... Clinical Reach Virtual Patient Encounter CONSULT module which enables both audio and video ... trial team. , Using the CONSULT module, patients and physicians can schedule a face ...
(Date:6/27/2016)... , June 27, 2016  Liquid Biotech ... the funding of a Sponsored Research Agreement with ... tumor cells (CTCs) from cancer patients.  The funding ... CTC levels correlate with clinical outcomes in cancer ... data will then be employed to support the ...
(Date:6/24/2016)... , June 24, 2016 Epic ... sensitively detects cancers susceptible to PARP inhibitors by ... tumor cells (CTCs). The new test has already ... therapeutics in multiple cancer types. Over ... DNA damage response pathways, including PARP, ATM, ATR, ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... its second eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced ... this eBook by providing practical tips, tools, and strategies for clinical researchers. , ...
Breaking Biology Technology: