Navigation Links
Looking for the heartbeat of cellular networks
Date:12/16/2009

Our cells' molecules form an intricate network of interactions. Today's techniques, however, can only be used to measure individual molecular reactions outside the cells. Since molecular concentrations are much higher in cells than in the laboratory, scientists suspect that the kinetics of molecular reactions in living cells differ substantially from external probes. We expected the cellular reaction speed to be higher," confirms LMU biophysicist Professor Dieter Braun. "However, our novel optical approach showed that depending on the length of the strands the coupling of DNA-strands inside living cells can be both faster and slower than outside." Data yielded from living cells are highly valuable for the development of models to understand the complex interactions as well as pathological processes in biological cells. Braun and his team now plan to probe a variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (PNAS online, 14 November 2009)

In their work, the scientists investigated the hybridization the coupling and de-coupling of two DNA-strands, which they introduced into living cells. To determine the reaction time constant they used an infrared laser to induce temperature oscillations of different frequencies in the cell and measured the concentration of the reaction partners, namely of coupled and de-coupled DNA. At low frequencies, these concentrations followed the temperature oscillations, whereas at higher frequencies they experienced a phase delay and oscillated with diminished amplitude. Both delay time and amplitude decrease, were evaluated to obtain the reaction time constant.

The team determined the concentrations using the so-called fluorescent energy transfer (FRET), which takes place between two chromophores at a certain spatial distance. They applied a FRET pair to the DNA-strands such that energy transfer occurred only if the strands were coupled. The chromophores were excited with a stroboscopic lamp and a CCD camera registered time and amplitude of the fluorescence, thus visualizing the concentration alterations with a spatial resolution of about 500 nanometres. The experiments revealed that DNA-strands comprising 16 units, the so-called bases, showed a sevenfold higher reaction speed compared to values determined outside living cells.

12-base DNA-strands, on the other hand, reacted times five times slower than outside cells. This is a surprising result, since kinetics of molecular reactions has been assumed to be always faster inside cells, where much higher molecular concentrations prevail. "Apparently cells modulate the reaction speed in a highly selective way," says Braun. "The measurements provide valuable insight into in vivo kinetic data for the systematic analysis of the complexity of biological cells," adds Ingmar Schn, who conducted the demanding experiments. The scientists are now planning to probe a wide variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (CR/suwe)


'/>"/>

Contact: Professor Dieter Braun
dieter.braun@lmu.de
49-892-180-2317
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Iowa State researchers looking for catalyst that allows plants to produce hydrocarbons
2. UAB researchers looking for genetic predictors for suicide
3. Case Western Reserve researchers looking at light-induced toxins in air and water
4. New satellite techniques for looking at climate change
5. Normal-looking sperm may have serious damage; scientists urge more care in selection
6. Looking for the Founatain of Youth? Cut your calories, research suggests
7. Are you looking at me?
8. Looking at neurons from all sides
9. Looking through the eyes of a mouse, scientists monitor circulating cells in its bloodstream
10. Carnegie Mellon researchers to develop probes to study cellular GPS
11. Think what you eat: Studies point to cellular factors linking diet and behavior
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
(Date:4/24/2017)... WASHINGTON , April 24, 2017 ... counsel and partner with  Identity Strategy Partners, LLP ... "With or without President Trump,s March 6, ... Foreign Terrorist Entry , refugee vetting can be instilled ... refugee resettlement. (Right now, all refugee applications are ...
(Date:4/17/2017)... -- NXT-ID, Inc. (NASDAQ: NXTD ) ("NXT-ID" or ... 2016 Annual Report on Form 10-K on Thursday April 13, 2017 ... ... Investor Relations section of the Company,s website at http://www.nxt-id.com  under ... http://www.sec.gov . 2016 Year Highlights: ...
Breaking Biology News(10 mins):
(Date:8/17/2017)... ... August 17, 2017 , ... Cynvenio Biosystems, Inc., a leader ... launch of a new breast cancer monitoring study in partnership with Saint Luke’s ... potential for early detection of recurrent breast cancer using LiquidBiopsy and natural killer ...
(Date:8/16/2017)... ... August 16, 2017 , ... Recent studies ... type. Many treatments for specific cancers, such as breast, prostate, or lung, target ... androgen deprivation therapy for advanced prostate cancer. , This therapy limits the ...
(Date:8/16/2017)... , ... August 16, 2017 , ... ... U.S. Food and Drug Administration (FDA) inspection at our Dilworth, MN site. The ... was issued. This inspection was conducted as part of a routine Bioresearch Monitoring ...
(Date:8/15/2017)... , Aug. 15, 2017 After spending the past ... support with crowdsourced data collection, GeneFo now offers this platform to ... aligning and amplifying support, adherence, and data collection vis a vis ... foundations mark the successful launch of this offer. ... GeneFo ...
Breaking Biology Technology: