Navigation Links
Looking for the heartbeat of cellular networks
Date:12/16/2009

Our cells' molecules form an intricate network of interactions. Today's techniques, however, can only be used to measure individual molecular reactions outside the cells. Since molecular concentrations are much higher in cells than in the laboratory, scientists suspect that the kinetics of molecular reactions in living cells differ substantially from external probes. We expected the cellular reaction speed to be higher," confirms LMU biophysicist Professor Dieter Braun. "However, our novel optical approach showed that depending on the length of the strands the coupling of DNA-strands inside living cells can be both faster and slower than outside." Data yielded from living cells are highly valuable for the development of models to understand the complex interactions as well as pathological processes in biological cells. Braun and his team now plan to probe a variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (PNAS online, 14 November 2009)

In their work, the scientists investigated the hybridization the coupling and de-coupling of two DNA-strands, which they introduced into living cells. To determine the reaction time constant they used an infrared laser to induce temperature oscillations of different frequencies in the cell and measured the concentration of the reaction partners, namely of coupled and de-coupled DNA. At low frequencies, these concentrations followed the temperature oscillations, whereas at higher frequencies they experienced a phase delay and oscillated with diminished amplitude. Both delay time and amplitude decrease, were evaluated to obtain the reaction time constant.

The team determined the concentrations using the so-called fluorescent energy transfer (FRET), which takes place between two chromophores at a certain spatial distance. They applied a FRET pair to the DNA-strands such that energy transfer occurred only if the strands were coupled. The chromophores were excited with a stroboscopic lamp and a CCD camera registered time and amplitude of the fluorescence, thus visualizing the concentration alterations with a spatial resolution of about 500 nanometres. The experiments revealed that DNA-strands comprising 16 units, the so-called bases, showed a sevenfold higher reaction speed compared to values determined outside living cells.

12-base DNA-strands, on the other hand, reacted times five times slower than outside cells. This is a surprising result, since kinetics of molecular reactions has been assumed to be always faster inside cells, where much higher molecular concentrations prevail. "Apparently cells modulate the reaction speed in a highly selective way," says Braun. "The measurements provide valuable insight into in vivo kinetic data for the systematic analysis of the complexity of biological cells," adds Ingmar Schn, who conducted the demanding experiments. The scientists are now planning to probe a wide variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (CR/suwe)


'/>"/>

Contact: Professor Dieter Braun
dieter.braun@lmu.de
49-892-180-2317
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Iowa State researchers looking for catalyst that allows plants to produce hydrocarbons
2. UAB researchers looking for genetic predictors for suicide
3. Case Western Reserve researchers looking at light-induced toxins in air and water
4. New satellite techniques for looking at climate change
5. Normal-looking sperm may have serious damage; scientists urge more care in selection
6. Looking for the Founatain of Youth? Cut your calories, research suggests
7. Are you looking at me?
8. Looking at neurons from all sides
9. Looking through the eyes of a mouse, scientists monitor circulating cells in its bloodstream
10. Carnegie Mellon researchers to develop probes to study cellular GPS
11. Think what you eat: Studies point to cellular factors linking diet and behavior
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... , April 17, 2017 NXT-ID, Inc. (NASDAQ: ... announces the filing of its 2016 Annual Report on Form 10-K ... Commission. ... 10-K is available in the Investor Relations section of the Company,s ... the SEC,s website at http://www.sec.gov . 2016 Year ...
(Date:4/11/2017)... April 11, 2017 Crossmatch®, a globally-recognized ... solutions, today announced that it has been awarded ... Projects Activity (IARPA) to develop next-generation Presentation Attack ... "Innovation has been a driving force within ... will allow us to innovate and develop new ...
(Date:4/11/2017)... NXT-ID, Inc. (NASDAQ:   NXTD ) ("NXT-ID" or ... independent Directors Mr. Robin D. Richards and Mr. ... the company,s corporate governance and expertise. ... Gino Pereira , Chief Executive Officer said," ... and benefiting from their considerable expertise as we move forward ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are ... 5.5 million people each year. Especially those living in larger cities are affected by ... in one of the most pollution-affected countries globally - decided to take action. , ...
(Date:10/10/2017)... (PRWEB) , ... October 10, 2017 , ... ... Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. Representatives of ... award for Excellence in Volunteer Experience from US2020. , US2020’s mission is to ...
(Date:10/10/2017)... ... October 10, 2017 , ... The ... prestigious awards honoring scientists who have made outstanding contributions to analytical ... during Pittcon 2018, the world’s leading conference and exposition for laboratory science, which ...
(Date:10/9/2017)... ... October 09, 2017 , ... ... 5, 2017, in the medical journal, Epilepsia, Brain Sentinel’s SPEAC® System which ... video EEG, in detecting generalized tonic-clonic seizures (GTCS) using surface electromyography (sEMG). ...
Breaking Biology Technology: