Navigation Links
Looking for the heartbeat of cellular networks
Date:12/16/2009

Our cells' molecules form an intricate network of interactions. Today's techniques, however, can only be used to measure individual molecular reactions outside the cells. Since molecular concentrations are much higher in cells than in the laboratory, scientists suspect that the kinetics of molecular reactions in living cells differ substantially from external probes. We expected the cellular reaction speed to be higher," confirms LMU biophysicist Professor Dieter Braun. "However, our novel optical approach showed that depending on the length of the strands the coupling of DNA-strands inside living cells can be both faster and slower than outside." Data yielded from living cells are highly valuable for the development of models to understand the complex interactions as well as pathological processes in biological cells. Braun and his team now plan to probe a variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (PNAS online, 14 November 2009)

In their work, the scientists investigated the hybridization the coupling and de-coupling of two DNA-strands, which they introduced into living cells. To determine the reaction time constant they used an infrared laser to induce temperature oscillations of different frequencies in the cell and measured the concentration of the reaction partners, namely of coupled and de-coupled DNA. At low frequencies, these concentrations followed the temperature oscillations, whereas at higher frequencies they experienced a phase delay and oscillated with diminished amplitude. Both delay time and amplitude decrease, were evaluated to obtain the reaction time constant.

The team determined the concentrations using the so-called fluorescent energy transfer (FRET), which takes place between two chromophores at a certain spatial distance. They applied a FRET pair to the DNA-strands such that energy transfer occurred only if the strands were coupled. The chromophores were excited with a stroboscopic lamp and a CCD camera registered time and amplitude of the fluorescence, thus visualizing the concentration alterations with a spatial resolution of about 500 nanometres. The experiments revealed that DNA-strands comprising 16 units, the so-called bases, showed a sevenfold higher reaction speed compared to values determined outside living cells.

12-base DNA-strands, on the other hand, reacted times five times slower than outside cells. This is a surprising result, since kinetics of molecular reactions has been assumed to be always faster inside cells, where much higher molecular concentrations prevail. "Apparently cells modulate the reaction speed in a highly selective way," says Braun. "The measurements provide valuable insight into in vivo kinetic data for the systematic analysis of the complexity of biological cells," adds Ingmar Schn, who conducted the demanding experiments. The scientists are now planning to probe a wide variety of molecular reactions in living cells, visualizing the heartbeat of cellular networks. (CR/suwe)


'/>"/>

Contact: Professor Dieter Braun
dieter.braun@lmu.de
49-892-180-2317
Ludwig-Maximilians-Universitt Mnchen
Source:Eurekalert

Related biology news :

1. Iowa State researchers looking for catalyst that allows plants to produce hydrocarbons
2. UAB researchers looking for genetic predictors for suicide
3. Case Western Reserve researchers looking at light-induced toxins in air and water
4. New satellite techniques for looking at climate change
5. Normal-looking sperm may have serious damage; scientists urge more care in selection
6. Looking for the Founatain of Youth? Cut your calories, research suggests
7. Are you looking at me?
8. Looking at neurons from all sides
9. Looking through the eyes of a mouse, scientists monitor circulating cells in its bloodstream
10. Carnegie Mellon researchers to develop probes to study cellular GPS
11. Think what you eat: Studies point to cellular factors linking diet and behavior
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/29/2016)... Nearly one billion matches per second with DERMALOG,s ... ... DERMALOG is Germany's largest Multi-Biometric ... Management. (PRNewsFoto/DERMALOG Identification Systems) ... DERMALOG is Germany's largest Multi-Biometric supplier: The company's Fingerprint Identification System is ...
(Date:11/22/2016)... According to the new market research report "Biometric System Market by Authentication ... (Hardware and Software), Function (Contact and Non-contact), Application, and Region - Global ... from USD 10.74 Billion in 2015 to reach USD 32.73 Billion by ... Continue Reading ... ...
(Date:11/19/2016)... , Nov. 18, 2016 Securus Technologies, ... solutions for public safety, investigation, corrections and monitoring, announced ... smaller competitor, ICSolutions, to have an independent technology judge ... the most modern high tech/sophisticated telephone calling platform, and ... customers that they do most of what we do ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... From ... innovation is taking over sports. On Thursday, December 15th a panel of entrepreneurs, ... disrupting the playing field at a Smart Talk session. Smart Talk will run ...
(Date:12/8/2016)... , Dec. 8, 2016 Eurofins announces the appointment of ... President of Eurofins Scientific Inc. (ESI). Mr. Murray ... proven professional and entrepreneurial experience in leading international business teams. As ... food testing market to uphold Eurofins, status as the global leader ... , ...
(Date:12/8/2016)... Oxford Gene Technology (OGT), ... panel range with the launch of the SureSeq myPanel™ NGS ... variants in familial hypercholesterolemia (FH). The panel delivers single nucleotide ... single small panel and allows customisation by ,mix and match, ... for LDLR , P C SK9 ...
(Date:12/8/2016)... San Francisco, CA (PRWEB) , ... December 08, ... ... and Oculus as finalists in the World Technology Awards. uBiome is one of ... were received across all categories. , In addition to uBiome, companies nominated as ...
Breaking Biology Technology: