Navigation Links
Long-term spinal cord stimulation stalls symptoms of Parkinson's-like disease
Date:1/23/2014

DURHAM, N.C. -- Researchers at Duke Medicine have shown that continuing spinal cord stimulation appears to produce improvements in symptoms of Parkinson's disease, and may protect critical neurons from injury or deterioration.

The study, performed in rats, is published online Jan. 23, 2014, in the journal Scientific Reports. It builds on earlier findings from the Duke team that stimulating the spinal cord with electrical signals temporarily eased symptoms of the neurological disorder in rodents.

"Finding novel treatments that address both the symptoms and progressive nature of Parkinson's disease is a major priority," said the study's senior author Miguel Nicolelis, M.D., Ph.D., professor of neurobiology at Duke University School of Medicine. "We need options that are safe, affordable, effective and can last a long time. Spinal cord stimulation has the potential to do this for people with Parkinson's disease."

Parkinson's disease is caused by the progressive loss of neurons that produce dopamine, an essential molecule in the brain, and affects movement, muscle control and balance.

L-dopa, the standard drug treatment for Parkinson's disease, works by replacing dopamine. While L-dopa helps many people, it can cause side effects and lose its effectiveness over time. Deep brain stimulation, which emits electrical signals from an implant in the brain, has emerged as another valuable therapy, but less than 5 percent of those with Parkinson's disease qualify for this treatment.

"Even though deep brain stimulation can be very successful, the number of patients who can take advantage of this therapy is small, in part because of the invasiveness of the procedure," Nicolelis said.

In 2009, Nicolelis and his colleagues reported in the journal Science that they developed a device for rodents that sends electrical stimulation to the dorsal column, a main sensory pathway in the spinal cord carrying information from the body to the brain. The device was attached to the surface of the spinal cord in rodents with depleted levels of dopamine, mimicking the biologic characteristics of someone with Parkinson's disease. When the stimulation was turned on, the animals' slow, stiff movements were replaced with the active behaviors of healthy mice and rats.

Because research on spinal cord stimulation in animals has been limited to the stimulation's acute effects, in the current study, Nicolelis and his colleagues investigated the long-term effects of the treatment in rats with the Parkinson's-like disease.

For six weeks, the researchers applied electrical stimulation to a particular location in the dorsal column of the rats' spinal cords twice a week for 30-minute sessions. They observed a significant improvement in the rats' symptoms, including improved motor skills and a reversal of severe weight loss.

In addition to the recovery in clinical symptoms, the stimulation was associated with better survival of neurons and a higher density of dopaminergic innervation in two brain regions controlling movement the loss of which cause Parkinson's disease in humans. The findings suggest that the treatment protects against the loss or damage of neurons.

Clinicians are currently using a similar application of dorsal column stimulation to manage certain chronic pain syndromes in humans. Electrodes implanted over the spinal cord are connected to a portable generator, which produces electrical signals that create a tingling sensation to relieve pain. Studies in a small number of humans worldwide have shown that dorsal column stimulation may also be effective in restoring motor function in people with Parkinson's disease.

"This is still a limited number of cases, so studies like ours are important in examining the basic science behind the treatment and the potential mechanisms of why it is effective," Nicolelis said.

The researchers are continuing to investigate how spinal cord stimulation works, and are beginning to explore using the technology in other neurological motor disorders.


'/>"/>

Contact: Rachel Harrison
rachel.harrison@duke.edu
919-419-5069
Duke University Medical Center
Source:Eurekalert  

Related biology news :

1. Long-term research reveals causes and consequences of environmental change
2. Sexual reproduction brings long-term benefits, study shows
3. Long-term preservation: Pensoft Publishers partner with the CLOCKSS Archive
4. Model forecasts long-term impacts of forest land-use decisions
5. Study shows long-term effects of radiation in pediatric cancer patients
6. Is long-term weight loss possible after menopause?
7. New long-term antimicrobial catheter developed
8. Preeclampsia poses a significant long-term health risk according to new research from Ben-Gurion U.
9. Preemies brains reap long-term benefits from Kangaroo Mother Care
10. Site-specific, long-term research expanding understanding of climate change
11. Tsunami caused long-term ecosystem change in the Caribbean
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Long-term spinal cord stimulation stalls symptoms of Parkinson's-like disease
(Date:6/22/2016)... On Monday, the Department of Homeland Security (DHS) issued ... the Biometric Exit Program. The Request for Information (RFI), ... that CBP intends to add biometrics to confirm when ... , in order to deter visa overstays, to ... Logo - http://photos.prnewswire.com/prnh/20160622/382209LOGO ...
(Date:6/15/2016)... New York , June 15, 2016 /PRNewswire/ ... a new market report titled "Gesture Recognition Market by ... and Forecast, 2016 - 2024". According to the report, ... USD 11.60 billion in 2015 and is estimated ... reach USD 48.56 billion by 2024.  ...
(Date:6/3/2016)... 2016 Das DOTM ... Nepal hat ein 44 Millionen ... Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an ... und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale ... teilgenommen, aber Decatur wurde als konformste und ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... SAN DIEGO , June 24, 2016 /PRNewswire/ ... that more sensitively detects cancers susceptible to PARP ... individual circulating tumor cells (CTCs). The new test ... of HRD-targeted therapeutics in multiple cancer types. ... therapies targeting DNA damage response pathways, including PARP, ...
(Date:6/23/2016)... ... June 23, 2016 , ... Mosio, a ... eBook, “Clinical Trials Patient Recruitment and Retention Tips.” Partnering with experienced clinical research ... by providing practical tips, tools, and strategies for clinical researchers. , “The landscape ...
(Date:6/23/2016)... TORONTO , June 23, 2016 /PRNewswire/ - ... Ontario biotechnology company, Propellon ... the development and commercialization of a portfolio of ... cancers. Epigenetic targets such as WDR5 represent an ... contribute significantly in precision medicine for cancer patients. ...
(Date:6/23/2016)... ... 2016 , ... Charm Sciences, Inc. is pleased to announce ... Research Institute approval 061601. , “This is another AOAC-RI approval of the Peel ... President of Regulatory and Industrial Affairs. “The Peel Plate methods perform comparably to ...
Breaking Biology Technology: