Navigation Links
Long-lasting nerve block could change pain management
Date:4/15/2009

Researchers at Children's Hospital Boston have developed a slow-release anesthetic drug-delivery system that could potentially revolutionize treatment of pain during and after surgery, and may also have a large impact on chronic pain management. In NIH-funded work, they used specially designed fat-based particles called liposomes to package saxitoxin, a potent anesthetic, and produced long-lasting local anesthesia in rats without apparent toxicity to nerve or muscle cells. The research was published online April 13 by the Proceedings of the National Academy of Sciences.

"The idea was to have a single injection that could produce a nerve block lasting days, weeks, maybe even months," explains Daniel Kohane, MD, PhD, of the Division of Critical Care Medicine in the Department of Anesthesiology at Children's, and the report's senior author. "It would be useful for conditions like chronic pain where, rather than use narcotics, which are systemic and pose a risk of addiction, you could just put that piece of the body to sleep, so to speak."

Previous attempts to develop slow-release anesthetics have not been successful due to the tendency for conventional anesthetics to cause toxicity to surrounding tissue. Indeed, drug packaging materials have themselves been shown to cause tissue damage. Now, Kohane and colleagues report that if saxitoxin is packaged within liposomes, it is able to block nerve transmission of pain without causing significant nerve or muscle damage.

In lab experiments, the researchers evaluated various formulations -- various types of liposomes containing saxitoxin with or without dexamethasone, a potent steroid known to augment the action of encapsulated anesthetics. The best liposomes produced nerve blocks lasting two days if they contained saxitoxin alone and seven days if combined with dexamethasone.

Cell culture experiments and tissue analysis confirmed that the formulations were not toxic to muscle or nerve cells. Furthermore, when the team examined expression of four genes known to be associated with nerve injury, they found no up-regulation.

"If these long-acting, low-toxicity formulations of local anesthetics are shown to be effective in humans, they could have a major impact on the treatment of acute and chronic pain," says Alison Cole, PhD, of the NIH's National Institute of General Medical Sciences, which partially funded the work. "This slow-release technology may also have broader applications in drug delivery for the treatment of a variety of diseases."

Kohane is currently optimizing the formulation to make it last even longer, while avoiding local and systemic toxicity. "It is conceivable we could have a formulation that is suitable for clinical trials before too long," he says.


'/>"/>

Contact: Rob Graham
rob.graham@childrens.harvard.edu
617-919-3110
Children's Hospital Boston
Source:Eurekalert  

Related biology news :

1. Carbon monoxide may cause long-lasting heart damage
2. Specific brain protein required for nerve cell connections to form and function
3. Targeting nerve growth factor may cure liver cancer
4. West Nile virus spread through nerve cells linked to serious complication
5. Team of scientists develops non-invasive method to track nerve-cell development in live human brain
6. Salk scientists identify key nerve navigation pathway
7. Tumor-targeting viral therapy slows neuroblastoma, malignant peripheral nerve sheath tumors
8. Engineer develops detergent to promote peripheral nerve healing
9. UT Southwestern researchers create molecule that nudges nerve stem cells to mature
10. Compound that helps rice grow reduces nerve, vascular damage from diabetes
11. Antidepressants need new nerve cells to be effective, UT Southwestern researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Long-lasting nerve block could change pain management
(Date:12/20/2016)... and GENEVA, Dec, 20, 2016   Valencell ... sensor technology, and STMicroelectronics (NYSE: STM), a ... of electronics applications, announced today the launch of ... for biometric wearables that includes ST,s compact ... Valencell,s Benchmark™ biometric sensor system. Together, SensorTile ...
(Date:12/16/2016)... -- The global wearable medical device market, in terms of value, ... 5.31 billion in 2016, at a CAGR of 18.0% during the ... ... medical devices, launch of a growing number of smartphone-based healthcare apps ... providers, and increasing focus on physical fitness. Furthermore, ...
(Date:12/15/2016)... Advancements in biometrics will radically ... wellbeing (HWW), and security of vehicles by ... vehicles begin to feature fingerprint recognition, iris ... monitoring, brain wave monitoring, stress detection, fatigue ... detection. These will be driven by built-in, ...
Breaking Biology News(10 mins):
(Date:1/21/2017)...   Boston Biomedical , an industry leader in ... stemness pathways, today presented data from two clinical studies ... American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium ... In a Phase Ib/II study of napabucasin – ... stemness pathways by targeting STAT3 – colorectal cancer (CRC) ...
(Date:1/20/2017)... 20, 2017 Stock-Callers.com explores the ... influenced the most recent performances of select equities. In ... RGLS ), Abeona Therapeutics Inc. (NASDAQ: ... ), and Sage Therapeutics Inc. (NASDAQ: SAGE ... View Research, global Biotech market size is expected to reach $604.40 billion by ...
(Date:1/20/2017)... NEW YORK , January 20, 2017 ... Health Organization, cancer is one of leading causes of ... in 2012. Although the number of cancer related deaths ... since 1990. Rising in incidence rate of various cancers ... According to a research report by Global Market Insights, ...
(Date:1/19/2017)... , Jan 19, 2017 Research and ... by Profiling Technology, Biomolecules, Cancer Type, Application - Global Opportunity Analysis ... ... forecasts that the global market is projected to reach $15,737 million ... 13% from 2016 to 2022. Omic technologies segment ...
Breaking Biology Technology: