Navigation Links
Long-distance distress signal from periphery of injured nerve cells begins with locally made protein
Date:7/30/2012

PHILADELPHIA (July 30, 2012) When the longest cells in the body are injured at their farthest reaches, coordinating the cells' repair is no easy task. This is in part because these peripheral nerve cells can be extremely long up to one meter in adult humans which is a lot of distance for a molecular distress signal to cover in order to reach the "command center" of the cell's nucleus.

Scientists have believed this process to be even more challenging because their textbook understanding for many years has been that the axons the long extensions of nerve cells away from the main cell body containing the nucleus do not manufacture the proteins involved in the molecular signal themselves. Yet, in recent years, some scientists have begun to challenge that textbook understanding, with preliminary evidence that one key protein involved in setting off a distress signal for cellular repair, known as importin beta1, was locally produced in the axons. They just weren't sure how.

"Now these textbooks need to be rewritten," said Dr. Jeffery Twiss, a professor and head of the department of biology in Drexel University's College of Arts and Sciences. Twiss co-authored new research recently published in Neuron, led by collaborators from the Weizmann Institute of Science. "Our new research is one of the strongest indicators yet of molecular signaling from end to end in peripheral nerve cells."

These researchers have provided strong new evidence that the protein importin beta1 is indeed produced locally in the axons of peripheral nerve cells. They also found that the version of the protein, when found in the axon, is made using a different molecular recipe than the version found in the nucleus, where it performs different essential cell functions. These discoveries may help scientists better understand how subsequent steps operate in the distress signal and in nerve cell repair, so they can eventually control and enhance the process to speed up recovery from nerve injuries.

Finding this evidence was far from simple: Importins are so crucial in the cell's nucleus that even the smallest embryo could not survive without them. But Rotem Ben-Tov Perry, a research student at the Weizmann Institute who was lead author of the new study, found a way to distinguish the importin beta1 in the cell body from that in the axon: The axonal protein was apparently made from a longer version of messenger RNA, the cell's working recipe for building a protein. To see if they could selectively affect just the axonal version of the protein, the Weizmann researchers worked with Drexel's Twiss to take advantage of high precision knock-out technology. Rather than knocking a whole gene out of the system, they managed to remove one little piece of the messenger RNA's recipe for manufacturing importins -just the longer bit that sends the RNA to the axon.

Now they observed plenty of importin beta1 in the cell body, but none in the axons. With the axonal segment of RNA knocked out of the recipe for importin beta1, a mouse embryo still had the importin it needed near the nucleus of its cells to grow and develop into a living animal but it took much longer to recover from peripheral nerve injury. Genes that are normally active in response to nerve damage were activated to a lesser degree. All of this suggests that the importin beta1 that normally helps inform the extended nerve cell about injury is, indeed, produced locally in the axon and that this protein found in the axon is a key part of the nerve repair signaling process.

"The data shows conclusively that importin beta1 protein is produced in axons, Rotem's work has validated the importins' crucial role in nerve repair," said Dr. Michael Fainzilber, senior author and professor at the Weizmann Institute.

Twiss said that next steps will be to better describe how the signaling process involving importin beta1 delivers a signal to begin nerve cell repair and, ultimately, develop strategies to better control these molecular steps of the repair mechanisms to improve nerve cell regeneration after injury.


'/>"/>
Contact: Rachel Ewing
raewing@drexel.edu
215-895-2614
Drexel University
Source:Eurekalert

Related biology news :

1. Scripps Research discoveries lead to newly approved drug for infant respiratory distress syndrome
2. Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise
3. To drive infections, a hijacking virus mimics a cells signaling system
4. Tiny electrical sensors could signal faster MRSA diagnosis
5. Protein signal is crucial for accurate control of insect size
6. Deterring signals: Tobacco plants advertise their defensive readiness to attacking leafhoppers
7. Bacterium signals plant to open up and let friends in
8. Scientists tie DNA repair to key cell signaling network
9. Ion selectivity in neuronal signaling channels evolved twice in animals
10. Penn biologists identify a key enzyme involved in protecting nerves from degeneration
11. Clues to nervous system evolution found in nerve-less sponge
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... 2017 Today HYPR Corp. , leading ... component of the HYPR platform is officially FIDO® ... security architecture that empowers biometric authentication across Fortune 500 ... secured over 15 million users across the financial services ... home product suites and physical access represent a growing ...
(Date:3/30/2017)... 2017  On April 6-7, 2017, Sequencing.com will host ... hackathon at Microsoft,s headquarters in Redmond, ... on developing health and wellness apps that provide a ... Genome is the first hackathon for personal genomics ... companies in the genomics, tech and health industries are ...
Breaking Biology News(10 mins):
(Date:10/10/2017)... SAN DIEGO, CALIF. (PRWEB) , ... October 10, 2017 , ... ... website as part of its corporate rebranding initiative announced today. The bold new ... broaden its reach, as the company moves into a significant growth period. , It ...
(Date:10/10/2017)... 10, 2017 SomaGenics announced the receipt of ... develop RealSeq®-SC (Single Cell), expected to be the first ... (including microRNAs) from single cells using NGS methods. The ... to accelerate development of approaches to analyze the heterogeneity ... "New techniques for measuring levels of mRNAs in individual ...
(Date:10/9/2017)... ... , ... At its national board meeting in North Carolina, ARCS® Foundation ... of Physics and Astronomy, has been selected for membership in ARCS Alumni Hall ... 2015 Breakthrough Prize in Fundamental physics for the discovery of the accelerating expansion of ...
(Date:10/7/2017)...  The 2017 Nobel Prize in Chemistry recognizes ... Joachim Frank and Richard Henderson ... (cryo-EM) have helped to broaden the use ... The winners worked with systems manufactured by Thermo ... resolved, three-dimensional images of protein structures that lead ...
Breaking Biology Technology: