Navigation Links
Livermore researchers use carbon nanotubes for molecular transport
Date:6/9/2008

LIVERMORE, Calif. - Molecular transport across cellular membranes is essential to many of life's processes, for example electrical signaling in nerves, muscles and synapses.

In biological systems, the membranes often contain a slippery inner surface with selective filter regions made up of specialized protein channels of sub-nanometer size. These pores regulate cellular traffic, allowing some of the smallest molecules in the world to traverse the membrane extremely quickly, while at the same time rejecting other small molecules and ions.

Researchers at Lawrence Livermore National Laboratory are mimicking that process with manmade carbon nanotube membranes, which have pores that are 100,000 times smaller than a human hair, and were able to determine the rejection mechanism within the pores.

"Hydrophobic, narrow diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform," said Olgica Bakajin, who led the LLNL team whose study appeared in the June 6 online edition of the journal Proceedings of the National Academy of Sciences.

In the initial discovery, reported in the May 19, 2006 issue of the journal Science, the LLNL team found that water molecules in a carbon nanotube move fast and do not stick to the nanotube's super smooth surface, much like water moves through biological channels. The water molecules travel in chains - because they interact with each other strongly via hydrogen bonds.

"You can visualize it as mini-freight trains of chain-bonded water molecules flying at high speed through a narrow nanotube tunnel," said Hyung Gyu Park, an LLNL postdoctoral researcher and a team member.

One of the most promising applications for carbon nanotube membranes is sea water desalination. These membranes will some day be able to replace conventional membranes and greatly reduce energy use for desalination.

In the recent study, the researchers wanted to find out if the membranes with 1.6 nanometer (nm) pores reject ions that make up common salts. In fact, the pores did reject the ions and the team was able to understand the rejection mechanism.

"Our study showed that pores with a diameter of 1.6nm on the average, the salts get rejected due to the charge at the ends of the carbon nanotubes," said Francesco Fornasiero, an LLNL postdoctoral researcher, team member and the study's first author

Fast flow through carbon nanotube pores makes nanotube membranes more permeable than other membranes with the same pore sizes. Yet, just like conventional membranes, nanotube membranes exclude ions and other particles due to a combination of small pore size and pore charge effects.

"While carbon nanotube membranes can achieve similar rejection as membranes with similarly sized pores, they will provide considerably higher permeability, which makes them potentially much more efficient than the current generation of membranes," said Aleksandr Noy, a senior member of the LLNL team.

Researchers will be able to build better membranes when they can independently change pore diameter, charge and material that fills gaps between carbon nanotubes.


'/>"/>

Contact: Anne Stark
stark8@llnl.gov
925-422-9799
DOE/Lawrence Livermore National Laboratory
Source:Eurekalert

Related biology news :

1. UCLA researchers develop new PET scanning probe that will allowing monitoring of the immune system
2. Researchers observe spontaneous ratcheting of single ribosome molecules
3. At Boston symposium, NARSAD researchers report on genes and family traits
4. Fruits, vegetables and teas may protect smokers from lung cancer, UCLA researchers report
5. 2 University of Illinois researchers named HHMI investigators
6. New family of gecko discovered by researchers from the U of Minnesota and Villanova University
7. Montana State University researchers map iron transport protein
8. Gene mutations in mice mimic human-like sleep disorder, UT Southwestern researchers find
9. UF researchers develop improved gene therapy agent
10. Researchers document rapid, dramatic reverse evolution in the threespine stickleback fish
11. Stowers Institute researchers identify gene linked to vertebral defects in patient populations
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... superior patient care by providing unparalleled technology to leaders of the medical imaging industry. ... recently added to the range of products distributed by Ampronix. Photo - ... ... ... ...
(Date:5/16/2016)... YORK , May 16, 2016   EyeLock ... solutions, today announced the opening of an IoT Center ... to strengthen and expand the development of embedded iris ... an unprecedented level of convenience and security with unmatched ... authenticate one,s identity aside from DNA. EyeLock,s platform uses ...
(Date:5/9/2016)... DUBAI , UAE, May 9, 2016 ... choice when it comes to expanding freedom for high ... Even in today,s globally connected world, there ... online conferencing system could ever duplicate sealing your deal ... are obtaining second passports by taking advantage of citizenship ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory Compliance ... consulting, provides a free webinar on Performing Quality Investigations: Getting to ... 12pm CT at no charge. , Incomplete investigations are still a major concern ...
(Date:6/23/2016)...  Amgen (NASDAQ: AMGN ) today announced ... life sciences incubator to accelerate the development of new ... at QB3@953 was created to help high-potential life science ... early stage organizations - access to laboratory infrastructure. ... two "Amgen Golden Ticket" awards, providing each winner with ...
(Date:6/22/2016)... DIEGO , June 22, 2016 ... that will allow them to produce up to ... from one lot within one week. These high-quality, ... time laboriously preparing cells and spend more time ... possible through a proprietary, high-volume manufacturing process that ...
(Date:6/22/2016)... , June 22, 2016  According to ... next generation sequencing (NGS) market include significant efforts ... smaller sequencers.  More accessible and affordable sequencers, say ... growing demand for consumables including sample prep materials.  ... Market for Sample Preparation for Next Generation Sequencing ...
Breaking Biology Technology: