Navigation Links
Live from the thymus: T-cells on the move
Date:2/17/2012

This press release is available in German.

T-cells are the immune system's security force. They seek out pathogens and rogue cells in the body and put them out of action. Their precursors are formed in the bone marrow and migrate from there into the thymus. Here, they mature and differentiate to perform a variety of tasks. Scientists at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have now succeeded for the first time in observing the maturation of immune cells in live zebrafish embryos. During their development, the immune cells migrate into and out of the thymus more than once. The zebrafish is thus an ideal animal model for studying the dynamic processes of immune cell development.

The thymus is a small, inconspicuous organ, but it is also vital for a functional immune system. This is because it is the development site of the T-lymphocytes (T-cells), which play a central role in the body's immune defences. Their precursors come from the bone marrow and are lured into the thymus by chemical attractants called chemokines. Once in the thymus, they develop into different T-cell types, which are eventually deployed into the rest of the body.

A research team at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg has now succeeded for the first time in observing these processes live. They have tracked the real-time development of T-cells in living zebrafish embryos, starting with the formation of the thymic anlage (the cluster of embryo cells from which the thymus develops), via the cells' migration into the organ from the bone marrow, right up to the stage when the fully formed T-cells are released from the thymus.

As the researchers discovered, this is a highly dynamic process: the precursor cells do not take a direct migration route into the thymus. Instead, they seem "undecided" and leave the organ several times before they finally settle there. "So far, we have no idea why this happens", says Thomas Boehm, Director at the Freiburg-based Max Planck Institute, who leads the study. The cells also migrate within the thymus. "This dynamic behaviour was previously unknown, as we were not able to observe the cells for any length of time", explains the scientist. These observations also show that the migration from bone marrow into the thymus is driven by the chemokines alone and is largely independent of the blood circulation.

For their study, the investigators used genetically modified zebrafish embryos. They are particularly well suited for this type of research, as the thymus is embedded in translucent tissue and the embryos can be observed live under the microscope. T-cell development in the zebrafish is comparable to that of mammals.

The researchers used a fluorescent dye to make the thymus tissue visible. They labelled the immune cells with a different fluorescent protein, which changes colour from green to red when it is exposed to light. By illuminating the thymus, they were then able to watch the green cells migrate into the thymus, while the red cells migrated back out again. "This change in colour clearly shows that the same cells were involved", says Thomas Boehm.

The technique also made the cell movements within the thymus visible: if the scientists briefly exposed only a small area of the thymus to the light source, they could then observe green and red cells gradually mingling back together again. Zebrafish mutants without a beating heart provided the researchers with proof that the precursor cells do not simply follow the blood flow when they migrate into the thymus, but that they are instead attracted there by the chemokines.

The researchers in Freiburg have thus succeeded in tracking the development of immune cells in a vertebrate for the first time. "It turns out that the zebrafish is well suited for this kind of experiment", says Thomas Boehm. "For example, we can now carry out direct tests to determine what effect certain substances have on the formation and maturation of the T-cells and the thymus tissue". Therefore, the study not only contributes towards a better understanding of the way the immune system works, the method could also help with the development of drugs to treat malfunctions of the thymus.


'/>"/>
Contact: Dr. Thomas Boehm
boehm@immunbio.mpg.de
49-761-510-8328
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. They are young and need the job: A second chance for dangerous T-cells
2. New anti-HIV gene therapy makes T-cells resistant to HIV infection
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Live from the thymus: T-cells on the move
(Date:12/8/2016)... 8, 2016  Singulex, Inc., the leader in Next ... into a license and supply agreement with Thermo Fisher ... provides Singulex access to Thermo Scientific BRAHMS PCT (Procalcitonin), ... is used to diagnose systemic bacterial infection and sepsis ... to aid in assessing the risk of critically ill ...
(Date:12/7/2016)... 7, 2016   Veridium , a leader ... of new CEO James Stickland . Stickland, ... of experience, has served in senior executive roles ... specialized in expanding a pipeline of venture capital ... most recently served as managing director of U.K.-based ...
(Date:12/5/2016)... WASHINGTON , Dec. 5, 2016  The ... (NIJ), today published "Can CT Scans Enhance or ... examines the potential of supporting or replacing forensic ... a CT scan. In response to ... NIJ is exploring using CT scans as a ...
Breaking Biology News(10 mins):
(Date:1/11/2017)... ... January 11, 2017 , ... As a ... Peru studying the pathogens that cause malaria and tuberculosis. Seeing firsthand the ravages ... discovery. , Now, as an assistant professor of biology and biotechnology at Worcester ...
(Date:1/11/2017)... Ca (PRWEB) , ... January 11, 2017 , ... ... U.S. each year and costing healthcare systems more than $23.7 billion, healthcare ... controlling costs. , Among the most common sepsis-causing pathogens are bacteria and ...
(Date:1/11/2017)... ... January 11, 2017 , ... IsoPlexis ... response analysis platform to measure the proteomic function of individual cells in patients, ... Research (SBIR) grant from the National Institute on Aging of the National Institutes ...
(Date:1/11/2017)... ... , ... Back pain relief technology is now available without a prescription at ... pain relief for WAR members. , This spinal restoration platform boasts utilization of technology ... millions suffering from chronic back pain. , What A Relief Back Pain ...
Breaking Biology Technology: