Navigation Links
Listening to cells: Scientists probe human cells with high-frequency sound
Date:2/1/2013

Philadelphia, Pa. Sound waves are widely used in medical imaging, such as when doctors take an ultrasound of a developing fetus. Now scientists have developed a way to use sound to probe tissue on a much tinier scale. Researchers from the University of Bordeaux in France deployed high-frequency sound waves to test the stiffness and viscosity of the nuclei of individual human cells. The scientists predict that the probe could eventually help answer questions such as how cells adhere to medical implants and why healthy cells turn cancerous.

"We have developed a new non-contact, non-invasive tool to measure the mechanical properties of cells at the sub-cell scale," says Bertrand Audoin, a professor in the mechanics laboratory at the University of Bordeaux. "This can be useful to follow cell activity or identify cell disease." The work will be presented at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

The technique that the research team used, called picosecond ultrasonics, was initially applied in the electronics industry in the mid-1980s as a way to measure the thickness of semiconductor chip layers. Audoin and his colleagues, in collaboration with a research group in biomaterials led by Marie-Christine Durrieu from the Institute of Chemistry & Biology of Membranes & Nano-objects at Bordeaux University, adapted picosecond ultrasonics to study living cells. They grew cells on a metal plate and then flashed the cell-metal interface with an ultra-short laser pulse to generate high-frequency sound waves. Another laser measured how the sound pulse propagated through the cells, giving the scientists clues about the mechanical properties of the individual cell components.

"The higher the frequency of sound you create, the smaller the wavelength, which means the smaller the objects you can probe" says Audoin. "We use gigahertz waves, so we can probe objects on the order of a hundred nanometers." For comparison, a cell's nucleus is about 10,000 nanometers wide.

The team faced challenges in applying picosecond ultrasonics to study biological systems. One challenge was the fluid-like material properties of the cell. "The light scattering process we use to detect the mechanical properties of the cell is much weaker than for solids," says Audoin. "We had to improve the signal to noise ratio without using a high-powered laser that would damage the cell." The team also faced the challenge of natural cell variation. "If you probe silicon, you do it once and it's finished," says Audoin. "If you probe the nucleus you have to do it hundreds of times and look at the statistics."

The team developed methods to overcome these challenges by testing their techniques on polymer capsules and plant cells before moving on to human cells. In the coming years the team envisions studying cancer cells with sound. "A cancerous tissue is stiffer than a healthy tissue," notes Audoin. "If you can measure the rigidity of the cells while you provide different drugs, you can test if you are able to stop the cancer at the cell scale."


'/>"/>

Contact: Ellen R. Weiss
eweiss@biophysics.org
240-290-5606
American Institute of Physics
Source:Eurekalert

Related biology news :

1. From the Amazon rainforest to human body cells: Quantifying stability
2. Programming cells: The importance of the envelope
3. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
4. Queens scientists seek vaccine for Pseudomonas infection
5. Scientists produce eye structures from human blood-derived stem cells
6. American Society of Plant Biologists honors early career women scientists
7. Brandeis scientists win prestigious prize for circadian rhythms research
8. Scientists discover new method of proton transfer
9. Salk scientists open new window into how cancers override cellular growth controls
10. WileyChina.com - Now Featuring Bespoke Pages for China’s Life Scientists
11. Scientists win $2 million to study new pathway in development and maintenance of lymphoma
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... and BANGALORE, India , April 28, ... Systems, a product subsidiary of Infosys (NYSE: INFY ... announced a global partnership that will provide end ... use mobile banking and payment services.      (Logo: ... key innovation area for financial services, but it also plays ...
(Date:4/19/2016)... The new GEZE SecuLogic access ... "all-in-one" system solution for all door components. It can ... door interface with integration authorization management system, and thus ... minimal dimensions of the access control and the optimum ... offer considerable freedom of design with regard to the ...
(Date:4/13/2016)... 13, 2016  IMPOWER physicians supporting Medicaid patients in ... new clinical standard in telehealth thanks to a new ... higi platform, IMPOWER patients can routinely track key health ... mass index, and, when they opt in, share them ... to a local retail location at no cost. By ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle Marche in ... peritoneal or pleural mesothelioma. Their findings are the subject of a new article on ... biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma patients that ...
(Date:6/23/2016)... -- A person commits a crime, and the detective uses ... criminal down. An outbreak of foodborne illness makes ... uses DNA evidence to track down the bacteria that caused ... not. The FDA has increasingly used a complex, cutting-edge technology ... Put as simply as possible, whole genome sequencing is a ...
(Date:6/23/2016)... June 23, 2016   EpiBiome , a precision ... million in debt financing from Silicon Valley Bank (SVB). ... and to advance its drug development efforts, as well ... "SVB has been an incredible strategic partner ... a traditional bank would provide," said Dr. Aeron ...
(Date:6/23/2016)... BEACH, Calif. , June 23, 2016  Blueprint ... new biological discoveries to the medical community, has closed ... co-founder Matthew Nunez . "We have ... us with the capital we need to meet our ... will essentially provide us the runway to complete validation ...
Breaking Biology Technology: