Navigation Links
Liposome-hydrogel hybrids: No toil, no trouble for stronger bubbles

People have been combining materials to bring forth the best properties of both ever since copper and tin were merged to start the Bronze Age. In the latest successful merger, researchers at the National Institute of Standards and Technology (NIST), the University of Maryland (UM) and the U.S. Food and Drug Administration (FDA) have developed a method to combine two substances that individually have generated interest for their potential biomedical applications: a phospholipid membrane "bubble" called a liposome and particles of hydrogel, a water-filled network of polymer chains. The combination forms a hybrid nanoscale (billionth of a meter) particle that may one day travel directly to specific cells such as tumors, pass easily though the target's cell membrane, and then slowly release a drug payload.

In a recent paper in the journal Langmuir*, the research team reviewed how liposomes and hydrogel nanoparticles have individual advantages and disadvantages for drug delivery. While liposomes have useful surface properties that allow them to target specific cells and pass through membranes, they can rupture if the surrounding environment changes. Hydrogel nanoparticles are more stable and possess controlled release capabilities to tune the dosage of a drug over time, but are prone to degradation and clumping. The researchers' goal was to engineer nanoparticles incorporating both components to utilize the strengths of each material while compensating for their weaknesses.

To manufacture their liposome-hydrogel hybrid vesicles, the researchers adapted a NIST-UM technique known as COMMAND for COntrolled Microfluidic Mixing And Nanoparticle Determination that uses a microscopic fluidic (microfluidic) device (see "NIST, Maryland Researchers COMMAND a Better Class of Liposomes" in NIST Tech Beat, April 27, 2010). In the new work, phospholipid molecules are dissolved in isopropyl alcohol and fed via a tiny (21 micrometers in diameter, or three times the size of a yeast cell) inlet channel into a "mixer" channel, then "focused" into a fluid jet by a water-based solution added through two side channels. Hydrogel precursor molecules are mixed in with the focusing fluid.

As the components blend together at the interfaces of the fluid streams, the phospholipid molecules self-assemble into nanoscale vesicles of controlled size and trap the monomers in solution inside. The newly formed vesicles then are irradiated with ultraviolet light to polymerize the hydrogel precursors they carry into a solid gel made up of cross-linked chains. These chains give strength to the vesicles while permitting them to retain the spherical shape of the liposome envelope (which, in turn, would facilitate passage through a cell membrane).

To turn the liposome-hydrogel hybrid vesicles into cellular delivery vehicles, a drug or other cargo would be added to the focusing fluid during production.


Contact: Michael E. Newman
National Institute of Standards and Technology (NIST)

Related biology news :

1. Tough new spuds take on double trouble
2. Tigers in serious trouble around the world, including here in the US
3. Double trouble: Bacterial super-infection after the flu
4. Troublesome green algae serve as coating substrate in record-setting battery
5. Normal cells far from cancer give nanosignals of trouble
6. Tummy troubles -- gastrin key in bacterial-induced stomach cancer
7. Troubled waters: Low Apalachicola River flow may hurt gulf fisheries
8. Double trouble for water life
9. In troubled economic times, BioSquare 2009 successfully serves as business and innovation starter
10. Penguins marching into trouble
11. Dry spells spelled trouble in ancient China
Post Your Comments:
Related Image:
Liposome-hydrogel hybrids: No toil, no trouble for stronger bubbles
(Date:10/26/2015)... ALTO, Calif. and LAS VEGAS ... Nok Nok Labs , an innovator in modern ... Alliance , today announced the launch of its latest ... first unified platform enabling organizations to use standards-based authentication ... The Nok Nok S3 Authentication Suite is ideal for ...
(Date:10/23/2015)... Research and Markets ( ) has announced the ... 2015-2019" report to their offering. ... recognition biometrics market to grow at a CAGR of ... --> The report, Global Voice Recognition Biometrics ... market analysis with inputs from industry experts. The report ...
(Date:10/22/2015)... Oct. 22, 2015  Aware, Inc. (NASDAQ: AWRE ), a ... for its third quarter ended September 30, 2015.  ... of 2015 was $4.0 million, a decrease of 33% compared to ... the third quarter of 2015 was $2.2 million, or $0.10 per ... share, in the same period a year ago.  ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... , Nov. 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. ... IIROC on behalf of the Toronto Stock Exchange, confirms ... there are no corporate developments that would cause the ... --> --> About Aeterna Zentaris ... . --> Aeterna Zentaris is a specialty ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model Aeronautics (AMA), ... MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View (FPV) racing ... AMA members have embraced this type of racing and several new model aviation pilots ...
(Date:11/24/2015)... 24, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ: ... the remaining 11,000 post-share consolidation (or 1,100,000 pre-share ... "Series B Warrants") subject to the previously disclosed ... 23, 2015, which will result in the issuance ... to the issuance of such shares, there will ...
(Date:11/24/2015)... ... November 24, 2015 , ... Creation Technologies would ... named to Deloitte's 2015 Technology Fast 500 list of the fastest growing companies ... FDA-cleared, Class II medical device that speeds up orthodontic tooth movement by as ...
Breaking Biology Technology: