Navigation Links
Liposome-hydrogel hybrids: No toil, no trouble for stronger bubbles
Date:6/9/2010

People have been combining materials to bring forth the best properties of both ever since copper and tin were merged to start the Bronze Age. In the latest successful merger, researchers at the National Institute of Standards and Technology (NIST), the University of Maryland (UM) and the U.S. Food and Drug Administration (FDA) have developed a method to combine two substances that individually have generated interest for their potential biomedical applications: a phospholipid membrane "bubble" called a liposome and particles of hydrogel, a water-filled network of polymer chains. The combination forms a hybrid nanoscale (billionth of a meter) particle that may one day travel directly to specific cells such as tumors, pass easily though the target's cell membrane, and then slowly release a drug payload.

In a recent paper in the journal Langmuir*, the research team reviewed how liposomes and hydrogel nanoparticles have individual advantages and disadvantages for drug delivery. While liposomes have useful surface properties that allow them to target specific cells and pass through membranes, they can rupture if the surrounding environment changes. Hydrogel nanoparticles are more stable and possess controlled release capabilities to tune the dosage of a drug over time, but are prone to degradation and clumping. The researchers' goal was to engineer nanoparticles incorporating both components to utilize the strengths of each material while compensating for their weaknesses.

To manufacture their liposome-hydrogel hybrid vesicles, the researchers adapted a NIST-UM technique known as COMMAND for COntrolled Microfluidic Mixing And Nanoparticle Determination that uses a microscopic fluidic (microfluidic) device (see "NIST, Maryland Researchers COMMAND a Better Class of Liposomes" in NIST Tech Beat, April 27, 2010). In the new work, phospholipid molecules are dissolved in isopropyl alcohol and fed via a tiny (21 micrometers in diameter, or three times the size of a yeast cell) inlet channel into a "mixer" channel, then "focused" into a fluid jet by a water-based solution added through two side channels. Hydrogel precursor molecules are mixed in with the focusing fluid.

As the components blend together at the interfaces of the fluid streams, the phospholipid molecules self-assemble into nanoscale vesicles of controlled size and trap the monomers in solution inside. The newly formed vesicles then are irradiated with ultraviolet light to polymerize the hydrogel precursors they carry into a solid gel made up of cross-linked chains. These chains give strength to the vesicles while permitting them to retain the spherical shape of the liposome envelope (which, in turn, would facilitate passage through a cell membrane).

To turn the liposome-hydrogel hybrid vesicles into cellular delivery vehicles, a drug or other cargo would be added to the focusing fluid during production.


'/>"/>

Contact: Michael E. Newman
michael.newman@nist.gov
301-975-3025
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Tough new spuds take on double trouble
2. Tigers in serious trouble around the world, including here in the US
3. Double trouble: Bacterial super-infection after the flu
4. Troublesome green algae serve as coating substrate in record-setting battery
5. Normal cells far from cancer give nanosignals of trouble
6. Tummy troubles -- gastrin key in bacterial-induced stomach cancer
7. Troubled waters: Low Apalachicola River flow may hurt gulf fisheries
8. Double trouble for water life
9. In troubled economic times, BioSquare 2009 successfully serves as business and innovation starter
10. Penguins marching into trouble
11. Dry spells spelled trouble in ancient China
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Liposome-hydrogel hybrids: No toil, no trouble for stronger bubbles
(Date:4/3/2017)... 3, 2017  Data captured by IsoCode, ... detected a statistically significant association between the ... treatment and objective response of cancer patients ... predict whether cancer patients will respond to ... well as to improve both pre-infusion potency testing ...
(Date:3/29/2017)... , March 29, 2017  higi, the health IT ... North America , today announced a ... the acquisition of EveryMove. The new investment and acquisition ... of tools to transform population health activities through the ... data. higi collects and secures data today ...
(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... LAGUNA HILLS, Calif. , Oct. 11, 2017 ... London (ICR) and University of ... prognostic tool to risk-stratify patients with multiple myeloma (MM), in ... nine . The University of Leeds ... by Myeloma UK, and ICR will perform the testing services ...
(Date:10/11/2017)... Tampa Bay, Florida (PRWEB) , ... October 11, ... ... Food and Drug Administration (FDA) has granted orphan drug designation to SBT-100, its ... antibody (sdAb) for the treatment of osteosarcoma. SBT-100 is able to cross the ...
(Date:10/10/2017)... ... October 10, 2017 , ... For the ... won a US2020 STEM Mentoring Award. Representatives of the FirstHand program travelled to ... Experience from US2020. , US2020’s mission is to change the trajectory of STEM ...
(Date:10/10/2017)... Calif. , Oct. 10, 2017 SomaGenics ... from the NIH to develop RealSeq®-SC (Single Cell), expected ... for profiling small RNAs (including microRNAs) from single cells ... Program highlights the need to accelerate development of approaches ... "New techniques for measuring levels ...
Breaking Biology Technology: