Navigation Links
Linheng Li proposes novel theory for mammalian stem cell regulation
Date:1/29/2010

Kansas City, Mo. (Jan. 29, 2010) Linheng Li, Ph.D., Investigator, together with Hans Clevers, M.D., Ph.D., Director of the Hubrecht Institute in Utrecht, Netherlands, co-authored a prospective review published today by the journal Science that proposes a model of mammalian adult stem cell regulation that may explain how the coexistence of two disparate stem cell states regulates both stem cell maintenance and simultaneously supports rapid tissue regeneration.

Adult stem cells are crucial for physiological tissue renewal and regeneration following injury. Current models assume the existence of a single quiescent (resting) population of stem cells residing in a single niche of a given tissue.

The Linheng Li Lab and others have previously reported that primitive blood-forming stem cells can be further separated into quiescent (reserved) and active (primed) sub-populations. Emerging evidence indicates that quiescent and active stem cell sub-populations also co-exist in several tissues including hair follicle, intestine, bone marrow, and potentially in the neural system in separate yet adjacent microenvironments. In the review, Dr. Li proposes that quiescent and active stem cell populations have separate but cooperative functional roles.

"Both quiescent and active stem cells co-exist in separate 'zones' in the same tissue," explained Dr. Li. "Active stem cells are the 'primed' sub-population that account for the generation of corresponding tissues, whereas quiescent stem cells function as a 'back-up' or 'reserved' sub-population, which can be activated in response to the loss of active stem cells or to tissue damage."

The new model would explain how the balance can be regulated between stem cell maintenance and simultaneous support of rapid tissue regeneration, not only at the individual cell level but also at the stem cell population level. The advantage of maintaining 'zoned' sub-populations of stem cells is to increase longevity of stem cells within organisms that have long life spans and large bodies.

The existence of two sub-populations of adult stem cells offers another advantage in the rapidly regenerating tissues in mammals by reducing the risk for mutations that cause tumors.

Intriguingly, cancers may utilize this same mechanism to maintain co-existing active-quiescent pools of stem cell sub-populations that support fast tumor growth (by active stem cells) while preserving the root of malignancy (by quiescent stem cells). This may explain the basis of drug resistance to cancer treatment.

"If this hypothesis is true, the critical question will be how to target quiescent drug-resistant cancer stem cells," said Dr. Li. "We will test this model in cancers in an effort to determine how to activate quiescent (drug-resistant) cancer stem cells for further targeting."


'/>"/>

Contact: Susan Weigel
slw@stowers.org
Stowers Institute for Medical Research
Source:Eurekalert

Related biology news :

1. Stowers Institutes Linheng Li Lab expands understanding of bone marrow stem cell niche
2. A study proposes a new universal rule to explain the equilibrium of plant populations
3. A study proposes a new universal rule to explain the equilibrium of plant populations
4. Study proposes new theory of how viruses may contribute to cancer
5. NOAA proposes federal regulations to protect black abalone
6. NOAA proposes rule to prevent commercial harvesting of krill
7. Baker Institute report proposes strategies to ensure global energy security
8. MGH researchers describe new way to identify, evolve novel enzymes
9. Muscle mass: Scientists identify novel mode of transcriptional regulation during myogenesis
10. Novel 3-D cell culture model shows selective tumor uptake of nanoparticles
11. IdentiPHI Re Launches SAFmodule Software to Secure Novell(R) Networks
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/18/2017)... Inc., a global expert in SoC-based imaging and computing solutions, has ... features the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® ... be showcased during the upcoming Medtec Japan at Tokyo Big Sight ... Las Vegas Convention Center April 24-27. ... Click here for an image of the ...
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
(Date:4/11/2017)... 11, 2017 Crossmatch®, a globally-recognized leader ... today announced that it has been awarded a ... Activity (IARPA) to develop next-generation Presentation Attack Detection ... "Innovation has been a driving force within Crossmatch ... allow us to innovate and develop new technologies ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... Charlotte, N.C. (PRWEB) , ... October 11, 2017 ... ... ARCS® Foundation President Andi Purple announced Dr. Suneel I. Sheikh, the ... Laboratories ( ASTER Labs ), Inc. has been selected for membership in ...
(Date:10/11/2017)... Oct. 11, 2017  VMS BioMarketing, a leading provider of ... oncology Clinical Nurse Educator (CNE) network, which will launch this ... communication among health care professionals to enhance the patient care ... staff, and other health care professionals to help women who ... ...
(Date:10/10/2017)... CALIF. (PRWEB) , ... October 10, 2017 , ... San ... part of its corporate rebranding initiative announced today. The bold new look is ... reach, as the company moves into a significant growth period. , It will also ...
(Date:10/10/2017)... , Oct. 10, 2017 SomaGenics announced ... the NIH to develop RealSeq®-SC (Single Cell), expected to ... profiling small RNAs (including microRNAs) from single cells using ... highlights the need to accelerate development of approaches to ... "New techniques for measuring levels of ...
Breaking Biology Technology: