Navigation Links
Life's smallest motor, cargo carrier of the cells, moves like a seesaw
Date:2/18/2010

Life's smallest motor, a protein that shuttles cargo within cells and helps cells divide, does so by rocking up and down like a seesaw, according to research conducted by scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and Brandeis University.

The researchers created high-resolution snapshots of a protein motor, called kinesin, as it walked along a microtubule, which are tube-shaped structures that form a cell's "skeleton." The result is the closest look yet at the structural changes kinesin proteins undergo as they ferry molecules within cells.

"We see for the first time how kinesin's atomic-scale moving parts allow it to pull itself and its cargo along a microtubule," says Ken Downing, a biophysicist with Berkeley Lab's Life Sciences Division. He conducted the research with postdoctoral fellow Charles Sindelar, now at Brandeis University.

"We found that there is a pivot point, where the kinesin motor attaches to the microtubule, which acts like a fulcrum and causes kinesin to rock up and down like a seesaw as it moves along the microtubule," adds Downing.

Their research is reported this week in the online early edition of the Proceedings of the National Academy of Sciences.

The first-ever glimpse of kinesin's seesaw motion offers key insights into one of life's most fundamental processes. Fueled by an energy-giving compound called ATP, kinesin proteins motor along microtubules like trains on a railroad track, towing cargo to various locations within cells and assisting in cell division. Microtubules are a cylindrical weave of proteins found throughout cells that serve as cellular scaffolding.

Until now, scientists did not have a clear picture of what happens when ATP binds with kinesin, and especially how this process triggers structural changes in kinesin that propel the protein along microtubules.

Extremely high-resolution crystallography images of kinesin motors have enabled researchers to piece together the protein's three-dimensional structure. But these images don't reveal how it works.

"The problem is that it is not until the protein motor binds to a microtubule that structural rearrangements occur that enable ATP hydrolysis, the process that transfers energy from ATP to kinesin," says Downing.

To image kinesin at this critical stage, Downing and Sindelar turned to cryoelectron microscopy, which is a type of electron microscopy in which the sample is studied at extremely low temperatures. The technology is used by structural biologists to image proteins and other molecules as they appear in real-world conditions, in this case a kinesin protein attached to a microtubule.

The technique yielded 8 to 9 angstrom-resolution snapshots of the kinesin motor at four stages of the motor's cycle as it moves along a microtubule. One angstrom is one-ten billionth of a meter. Using these images as a guide, the researchers then "dropped in" even higher resolution crystallographic images of kinesin's components. This step enabled them to derive atomic-level structural models of kinesin in action.

"Collectively, this work provides a detailed molecular explanation for kinesin's microtubule-attached power stroke," says Downing. "In other words, we can see it how it works in real life. We looked at kinesin in different phases, and learned what causes it to move from one conformation to another, which is how it pulls cargo along the microtubule."

In addition to further elucidating a key biological process, Downing and Sindelar's research may inform the development of disease-fighting drugs. One of kinesin's main jobs is moving chromosomes apart during cell division. Anything that blocks this process will lead to cell death, which is the basis of several cancer therapies such as taxol.

"New insights into how kinesin works could allow scientists to develop drugs that target and block particular kinesin movements," says Downing.


'/>"/>

Contact: Dan Krotz
dakrotz@lbl.gov
510-486-4019
DOE/Lawrence Berkeley National Laboratory
Source:Eurekalert  

Related biology news :

1. Lifestyle changes for teens critical in light of research about teens heart disease risk
2. Lifestyle changes may stave off diabetes for a decade
3. Genomes reveal bacterial lifestyles: Research
4. American College of Preventive Medicine releases lifestyle medicine literature review
5. Recruitment of reproductive features into other cell types may underlie extended lifespan in animals
6. Late motherhood boosts family lifespan
7. Modern lifestyle prevents tooth decay
8. M.I.N.D. Institute researchers call for fragile X testing throughout the lifespan
9. Sex and lifespan linked in worms
10. Scientists reveal the lifestyle evolution of wild marine bacteria
11. Eliminating germline lengthens fly lifespan, Brown study shows
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Life's smallest motor, cargo carrier of the cells, moves like a seesaw
(Date:6/30/2017)... Va. , June 30, 2017 ... leading developer and supplier of face and eye ... ATA Featured Product provider program. ... an innovative way to monitor a driver,s attentiveness ... greatly from being able to detect fatigue and ...
(Date:5/23/2017)... May 23, 2017  Hunova, the first robotic gym for the rehabilitation ... officially launched in Genoa, Italy . The first 30 ... and the USA . The technology was developed and ... by the IIT spin-off Movendo Technology thanks to a 10 million euro ... Release, please click: ...
(Date:5/6/2017)... , May 5, 2017 RAM ... announced a new breakthrough in biometric authentication based ... quantum mechanical properties to perform biometric authentication. These new ... semiconductor material created by Ram Group and its ... entertainment, transportation, supply chains and security. Ram Group ...
Breaking Biology News(10 mins):
(Date:8/11/2017)... ... August 11, 2017 , ... ... and, in particular, more natural alternatives to synthetic ingredients,” said Matt Hundt, President ... Wave, with the established manufacturing presence and know-how of Biorigin will allow us ...
(Date:8/10/2017)... Philadelphia, PA (PRWEB) , ... August 09, 2017 ... ... back to the classroom next week-- as students. From August 14th through the ... Institute. The institute, which debuted in the summer of 2016, provides Philadelphia-based middle ...
(Date:8/10/2017)... ... August 09, 2017 , ... Each year in the United States ... enough to live an independent lifestyle and, even worse, the one-year mortality rate is ... doctors at the University of California Davis Medical Center (Sacramento) and Second Xiangya Hospital ...
(Date:8/10/2017)... California, USA (PRWEB) , ... August 09, 2017 ... ... has partnered with four international biomedical optics laboratories — the Wellman Center for ... Hospital, Medical Laser Center Lübeck and the Beckman Laser Institute at University of ...
Breaking Biology Technology: