Navigation Links
Life in a bubble
Date:7/30/2008

CAMBRIDGE, Mass. -- Hundreds of insect species spend much of their time underwater, where food may be more plentiful. MIT mathematicians have now figured out exactly how those insects breathe underwater.

By virtue of their rough, water-repellent coat, when submerged these insects trap a thin layer of air on their bodies. These bubbles not only serve as a finite oxygen store, but also allow the insects to absorb oxygen from the surrounding water.

"Some insects have adapted to life underwater by using this bubble as an external lung," said John Bush, associate professor of applied mathematics, a co-author of the recent study.

Thanks to those air bubbles, insects can stay below the surface indefinitely and dive as deep as about 30 meters, according to the study co-authored by Bush and Morris Flynn, former applied mathematics instructor. Some species, such as Neoplea striola, which are native to New England, hibernate underwater all winter long.

This phenomenon was first observed many years ago, but the MIT researchers are the first to calculate the maximum dive depths and describe how the bubbles stay intact as insects dive deeper underwater, where pressure threatens to burst them.

The new study, which appears in the Aug. 10 issue of the Journal of Fluid Mechanics, shows that there is a delicate balance between the stability of the bubble and the respiratory needs of the insect.

The air bubble's stability is maintained by hairs on the insects' abdomen, which help repel water from the surface. The hairs, along with a waxy surface coating, prevent water from flooding the spiraclestiny breathing holes on the abdomen.

The spacing of these hairs is critically important: The closer together the hairs, the greater the mechanical stability and the more pressure the bubble can withstand before collapsing.

However, mechanical stability comes at a cost. If the hairs are too close together, there is not enough surface area through which to breathe.

"Because the bubble acts as an external lung, its surface area must be sufficiently large to facilitate the exchange of gases," said Flynn, who is now an assistant professor of mechanical engineering at the University of Alberta.

The researchers developed a mathematical model that takes these factors into account and allows them to predict the range of possible dive depths. They found that there is not only a maximum depth beyond which the bubble collapses, but a minimum depth above which the bubble cannot meet the insect's respiratory needs.

Though the researchers found that the insects can go as deep as 30 meters below the surface, they rarely venture deeper than several meters, due to environmental factors such as amount of sunlight, availability of prey and the presence of predators.

The researchers first took an interest in the external lung phenomenon when they accidentally captured one of the underwater breathers while looking for water striders. A few years ago, Bush and colleagues figured out how the striders use surface tension to glide across the water's surface.

Other researchers have explored systems that could replicate the external lung on a larger scale, for possible use by diving humans. A team at Nottingham Trent University showed that a porous cavity surrounded by water-repellent material is supplied with oxygen by the thin air layer on its surface. The surface area required to support human respiration is impractically large, in excess of 100 square meters; however, other avenues for technological application exist. For example, such a device could supply the oxygen needed by fuel cells to power small autonomous underwater vehicles.


'/>"/>

Contact: Teresa Herbert
therbert@mit.edu
617-258-5403
Massachusetts Institute of Technology
Source:Eurekalert

Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/2/2017)... 2017  EyeLock LLC, a market leader of iris-based ... " What You Should Know About Biometrics in the ... authenticity is a growing concern. In traditional schemes, cryptography ... traditional authentication schemes such as username/password suffer from inherent ... offers an elegant solution to the problem of high-security ...
(Date:1/30/2017)... 2017   Invitae Corporation (NYSE: ... companies, today announced that it will report its fourth ... guidance on Monday, February 13, 2017, and Invitae,s management ... 4:45 p.m. Eastern / 1:45 p.m. Pacific. ... review financial results, guidance, and recent developments and will ...
(Date:1/24/2017)... , Jan. 24, 2017 Biopharm ... of the laboratory use of nuclear magnetic resonance ... experienced end-users and profiled current practices, developments, trends ... as well as growth and opportunities. These areas ... suppliers, NMR instruments, needs and innovation requirements, hyphenated ...
Breaking Biology News(10 mins):
(Date:2/26/2017)... ... , ... Rob Lowe is a well recognized television personality, so it seems ... issues that are important to the American public and important to society at large. ... hot topic around the world for a few years. , The climate and how ...
(Date:2/24/2017)... , ... February 24, 2017 , ... Chef Jodi Abel ... scene. Making stops in several cities, she gained a number of delicious recipes ... in Stellenbosch, a town in South Africa’s Western Cape province. It is internationally ...
(Date:2/24/2017)... 2017  Driven by consumers, preference towards more ... fastest growing categories, finds the recently published U.S. ... Care: Multi-regional Market Analysis and Opportunities study ... Kline. "Biotechnology actives are derived from ... effective for skin and hair care applications," explains ...
(Date:2/24/2017)... 24, 2017  VWR Corporation (NASDAQ: VWR), the leading global ... production customers, today reported its financial results for the fourth ... Highlights: 4Q16 record quarterly net sales ... an organic basis. 4Q16 EMEA-APAC ... basis, while the Americas net sales increased 2.5%, or down ...
Breaking Biology Technology: