Navigation Links
Less is more for reef-building corals
Date:8/28/2012

Researchers at the University of Hawaii Manoa (UHM) School of Ocean and Earth Science and Technology (SOEST) made a discovery that challenges a major theory in the field of coral reef ecology. The general assumption has been that the more flexible corals are, regarding which species of single celled algae (Symbiodinium) they host in coral tissues, the greater ability corals will have to survive environmental stress. In their paper published August 29, 2012, however, scientists at the Hawaii Institute of Marine Biology (HIMB) at SOEST and colleagues documented that the more flexible corals are, the more sensitive to environment disturbances they are.

"This is exactly the opposite of what we expected," said Hollie Putnam, PhD candidate at UHM and lead author of the study. This finding was surprising, as it is thought corals exploit the ability to host a variety of Symbiodinium to adapt to climate change. "Our findings suggest more is not always better," she continued.

"The relationship of coral species to their algal symbionts is fundamental to their biology," says David Garrison, program director in the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the research. "This study gives us a new understanding of how corals are likely to respond to the stresses of environmental change."

Reef corals are the sum of an animal (host), and single celled algae that live inside the corals' tissues (also called 'endosymbionts'). This is a mutually beneficial arrangement the coral provide protection and keep the algae in shallow, sunlit seas; and the algae produce large amounts of energy through photosynthesis, which coral use to survive and build their skeletons. The stability of this symbiosis is critical to the survival of corals and if they lose their endosymbionts they bleach and often die. Corals can host different types of endosymbionts, which affects their response to stress.

Putnam and other scientists from Dr. Ruth Gates' laboratory at HIMB took tiny tissue samples from 34 species of coral in Moorea, French Polynesia. By analyzing the DNA from the endosymbionts in these samples, they were able identify the types of Symbiodinium. This revealed that some corals host a single Symbiodinium type that is the same in all individuals of that coral species, and that others host many types that vary among individuals within a coral species.

"The corals we sampled spanned a range of environmental sensitivities from resistant to susceptible, and we were able to link, for the first time, patterns in environmental performance of corals to the number and variety of symbionts they host," reported Putnam. These patterns show that corals hosting diverse Symbiodinium communities, those that are flexible with respect to endosymbionts (termed 'generalists'), are environmentally sensitive. In contrast, environmentally resistant corals were those that associate with one or few specific types of Symbiodinium (termed 'specifists').

"Coral reefs are economically and ecologically important, providing a home for a high diversity of organisms necessary for food supplies, recreation, and tourism in many countries. The better we understand how corals respond to stress, the more capable we will be to forecast and manage future reefs communities," said senior author Professor Ruth Gates. Coral reefs can undergo mass mortality due to high temperatures, and ocean acidification is threatening the capacity for skeletal growth. These global stressors are superimposed on the local threats of pollution, coastal development and overfishing, together threatening the persistence of corals as a functional ecosystem in the future.

In the future, the Gates Lab will examine what causes the differences in success between corals that are flexible and inflexible in their Symbiodinium associations and compare the symbiotic flexibility in corals and reefs across much larger areas in locations such as Hawaii, Moorea, Taiwan and American Samoa. This further understanding will allow better predictions of the future of reefs under further ocean warming and acidification.


'/>"/>

Contact: Marcie Grabowski
mworkman@hawaii.edu
808-956-3151
University of Hawaii ‑ SOEST
Source:Eurekalert  

Related biology news :

1. Pacific islands may become refuge for corals in a warming climate, study finds
2. Corals could survive a more acidic ocean
3. Some corals like it hot: Heat stress may help coral reefs survive climate change
4. Breaking up isnt hard to do -- the secret lives of corals on dark and stormy nights
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Less is more for reef-building corals
(Date:7/20/2017)... DAL ) customers now can use fingerprints instead of their ... (DCA). ... launches biometrics to board aircraft at Reagan Washington National Airport ... Delta,s biometric boarding pass experience that launched in May at ... process to allow eligible Delta SkyMiles Members who are enrolled in CLEAR ...
(Date:6/23/2017)... ITHACA, N.Y. , June 23, 2017  IBM ... in dairy research, today announced a new collaboration using ... the chances that the global milk supply is impacted ... project, Cornell University has become the newest academic institution ... Chain, a food safety initiative that includes IBM Research, ...
(Date:5/23/2017)... -- Hunova, the first robotic gym for the rehabilitation and functional motor sense ... Genoa, Italy . The first 30 robots will be available ... USA . The technology was developed and patented at the IIT ... Movendo Technology thanks to a 10 million euro investment from entrepreneur Sergio ... ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... October 12, 2017 , ... AMRI, a global contract ... to improve patient outcomes and quality of life, will now be offering its ... attributed to new regulatory requirements for all new drug products, including the finalization ...
(Date:10/11/2017)... YORBA LINDA, CA (PRWEB) , ... October 11, ... ... adapted to upregulate any gene in its endogenous context, enabling overexpression experiments and ... activation (CRISPRa) system with small RNA guides is transformative for performing systematic gain-of-function ...
(Date:10/11/2017)... ... October 11, 2017 , ... ... it will be hosting a Webinar titled, “Pathology is going digital. Is your ... on digital pathology adoption best practices and how Proscia improves lab economics and ...
(Date:10/11/2017)... ... 2017 , ... Disappearing forests and increased emissions are the main causes of ... year. Especially those living in larger cities are affected by air pollution related diseases. ... most pollution-affected countries globally - decided to take action. , “I knew I had ...
Breaking Biology Technology: