Navigation Links
Lensless camera uses X-rays to view nanoscale materials and biological specimens
Date:2/19/2008

ARGONNE, Ill. (Feb. 19, 2007) X-rays have been used for decades to take pictures of broken bones, but scientists at the U.S. Department of Energys (DOE) Argonne National Laboratory and their collaborators have developed a lensless X-ray technique that can take images of ultra-small structures buried in nanoparticles and nanomaterials, and features within whole biological cells such as cellular nuclei.

Argonne scientists along with scientists from the University of California at Los Angeles, the University of Melbourne, La Trobe University and the Australian Synchrotron developed a way to examine internal and buried structures in micrometer-sized samples on the scale of nanometers. This is important to the understanding of how materials behave electrically, magnetically and under thermal and mechanical stress. Application of this capability to biology and biomedicine could contribute to our understanding of disease and its eradication, healing after injury, cancer and cell death.

X-rays are ideally suited for nanoscale imaging because of their ability to penetrate the interior of the object, but their resolution has traditionally been limited by lens technology. The new lensless technique being developed at Argonne avoids this limitation.

There is no lens involved at all, said Ian McNulty, the lead Argonne author on a new publication on this work appearing in the journal Physical Review Letters. Instead, a computer uses sophisticated algorithms to reconstruct the image. We expect this technique will enhance our understanding of many problems in materials and biological research. The technique can be extended beyond the current resolution of about 20 nanometers to image the internal structure of micrometer-sized samples at finer resolution, reaching deep into the nanometer scale.

Other types of microscopes, such as electron microscopes, can image structural details on the nanometer scale, but once the sample reaches sizes of a few micrometers and larger, the usefulness of these instruments to probe its internal structure is limited. In many cases, only the surface of the sample can be studied, or the sample must be sliced to view its interior, which can be destructive.

A collaborative team comprising members of the X-ray Microscopy and Imaging Group at Argonnes Advanced Photon Source (APS) and a team led by Professor John Miao at the University of California at Los Angeles developed a powerful new extension of the new lensless imaging technique that enables high resolution imaging of a specific element buried inside a sample.

The key is the high intensity X-ray beams created at the APS at Argonne. An intense, coherent X-ray beam collides with the sample, creating a diffraction pattern which is recorded by a charge coupled device (CCD) camera. The X-ray energy is tuned to an atomic resonance of a target element in the sample. Using sophisticated phase-recovery algorithms, a computer reconstructs an image of the specimen that highlights the presence of the element. The result is an image of the internal architecture of the sample at nanometer resolution and without destructive slicing. By using X-ray energies that coincide with an atomic absorption edge, the imaging process can distinguish between different elements in the sample.

If the nucleus or other parts of a cell are labeled with protein specific tags, it can be imaged within whole cells at a resolution far greater than that of ordinary microscopes.

Another application of this new method of imaging includes the burgeoning field of nanoengineering, which endeavors to develop more efficient catalysts for the petrochemical and energy industries and materials with electrically programmable mechanical, thermal and other properties.

There are only a handful of places in the world this can be done and APS is the only place in the United States at these X-ray energies, X-ray Microscopy and Imaging Group Leader Qun Shen said. We would eventually like to create a dedicated, permanent laboratory facility at the APS for this imaging technique that can be used by scientists on a routine basis.

A dedicated facility would require building an additional beamline at the APS, which currently has 34 sectors, each containing one or more beamlines.


'/>"/>

Contact: Brock Cooper
bcooper@anl.gov
630-252-5565
DOE/Argonne National Laboratory
Source:Eurekalert

Related biology news :

1. Purdue researchers click nutrition with camera diet study
2. Bioengineers at University of Pennsylvania devise nanoscale system to measure cellular forces
3. Drawing nanoscale features the fast and easy way
4. Heftier atoms reduce friction at the nanoscale, study led by Penn researcher reveals
5. Wiggle room: Cornell researcher borrows idea from sperm to provide energy for nanoscale robots
6. Keck Foundation funds study of biological interactions with nanomaterials
7. Scientists discover record-breaking hydrogen storage materials for use in fuel cells
8. Purdue researchers obtain a snapshot clarifying how materials enter cells
9. Sea cliff erosion, hemp construction materials and more at UCSD Engineering Conference
10. New insight into the mechanisms of voltage sensing and transduction in biological processes
11. Biological warfare: What do you need to know?
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/15/2016)...  There is much more to innovative access systems ... Continental will demonstrate the intelligence of today,s solutions at ... Through the combination of the keyless entry and start ... the international technology company is opening up new possibilities ... "The integration of biometric elements brings our expertise ...
(Date:12/12/2016)...  Researchers at Trinity College, Dublin, are opening ... the material with Silly Putty. The mixture (known as ... to sense pulse, blood pressure, respiration, and even ... The research team,s findings were published Thursday ... http://science.sciencemag.org/content/354/6317/1257 ...
(Date:12/8/2016)... Dec. 8, 2016  Singulex, Inc., the leader in ... entered into a license and supply agreement with Thermo ... agreement provides Singulex access to Thermo Scientific BRAHMS PCT ... is used to diagnose systemic bacterial infection and ... to aid in assessing the risk of critically ...
Breaking Biology News(10 mins):
(Date:1/24/2017)... As Outsourcing of Cell Line Development Services Drives the ... by Expanding their Service Portfolio and Collaborating with Biopharmaceutical ... cell banking market addresses market sizing, emerging trends, and ... in the market. The base year considered is 2015 ... The cell banking market is expected to grow ...
(Date:1/24/2017)... ORANGE COUNTY, Calif. , Jan. 24, 2017 ... respiratory testing solutions, announced today that in ... providing advanced respiratory assessment to the Roche FIREFISH ... muscular atrophy (SMA) develop respiratory insufficiency due to ... alpha motor neurons in the spinal cord. This ...
(Date:1/24/2017)... Reha Technology USA Inc. has ... . The need for Robotic technology in the rehab space ... in the surgical space. Project Walk – Boston ... and adding technology to their continuum of care. They now have ... repetitions which has been shown to improve gait with patients. The ...
(Date:1/24/2017)... Relmada Therapeutics, Inc. (OTCQB: RLMD), a clinical-stage ... nervous system (CNS) diseases, is pleased to announce that ... with the U.S. Food and Drug Administration (FDA), a ... LevoCap ER (REL-1015, levorphanol extended release, abuse deterrent capsules) ... filing is achievable.   "The FDA,s input ...
Breaking Biology Technology: