Navigation Links
Learning from the linker

Mature cells can be reprogrammed to pluripotency and thus regain the ability to divide and differentiate into specialized cell types. Although these so-called induced pluripotent stem cells (iPS cells) represent a milestone in stem cell research, many of the biochemical processes that underlie reprogramming are still not understood. Scientists from the EMBL Hamburg and from the Max Planck Institute for Molecular Biomedicine in Mnster, Germany now shed new light on this process. In a study published today in Nature Cell Biology, the scientists describe important details about the structure of the transcription factor Oct4, known to play a crucial role in the reprogramming of terminally differentiated cells. The study broadens the knowledge about the reprogramming of cells and may pave the way for medical applications in the field of regenerative medicine and drug discovery.

The transcription factor Oct4 is a protein that binds to DNA and controls the genes involved in reprogramming the cells. The team at EMBL Hamburg has now been able to resolve the crystal structure of Oct4 using high-intensity X-ray beams. In particular, their analysis focused on a previously unexplored linker sequence between two DNA binding elements of the protein. "The uniqueness of the linker has caught our attention for more than a decade and, thus, we are extremely pleased to see it for the first time, helping us rationalize its function in reprogramming cells to pluripotency" says Matthias Wilmanns who led the work in Hamburg.

The authors suggest that the linker recruits key partners to the Oct4 target genes, without whom the process of reprogramming cannot be completed. Colleagues at the Max Planck Institute for Molecular Biomedicine led by Hans Schler supported these findings with studies on the modifications of the linker. They showed that changes in the sequence of the linker led to the loss of Oct4's reprogramming activity, and that a single residue mutation has major effects on the protein interface and thus affects the recruiting of key partners.

"Our work shows how unique the Oct4 interface is and how crucial it is for reprogramming to pluripotency. These are vital steps forward in our understanding of cell reprogramming and could lead us to new applications in the fields of drug discovery and tissue engineering" said Hans Schler. Ongoing research will help determine an integrated picture on how Oct4 acts in the context of many other protein components in stem cell pluripotency.


Contact: Isabelle Kling
European Molecular Biology Laboratory

Related biology news :

1. Majority-biased learning
2. Awake mental replay of past experiences critical for learning
3. Dartmouth researchers are learning how exercise affects the brain
4. Songbirds learning hub in brain offers insight into motor control
5. New Genetics educational resource promotes active learning
6. New model gives hands-on help for learning the secrets of molecules
7. Learning faster with neurodegenerative disease
8. Learning from each other -- growing together
9. Sleep-deprived bees have difficulty relearning
10. Learning a new sense
11. Learning whos the top dog: Study reveals how the brain stores information about social rank
Post Your Comments:
(Date:6/21/2016)... , June 21, 2016 NuData ... the new role of principal product architect and ... the director of customer development. Both will report ... technical officer. The moves reflect NuData,s strategic growth ... response to high customer demand and customer focus ...
(Date:6/16/2016)... The global Biometric ... USD 1.83 billion by 2024, according to a ... proliferation and increasing demand in commercial buildings, consumer ... the market growth.      (Logo: ... of advanced multimodal techniques for biometric authentication and ...
(Date:6/9/2016)... control systems is proud to announce the introduction of fingerprint attendance control software, allowing ... are actually signing in, and to even control the opening of doors. ... ... ... Photo - ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... - BIOREM Inc. (TSX-V: BRM) ("Biorem" or "the Company") announces ... Clean Technology Fund I, LP and Clean Technology Fund ... venture capital funds which together hold approximately 59% of ... as converted basis), that they have entered into an ... in Biorem to TUS Holdings Co. Ltd. ("TUS") ( ...
(Date:6/27/2016)... ... June 27, 2016 , ... ... will join the faculty of the University of North Carolina Kenan-Flagler Business ... strategy and entrepreneurship at UNC Kenan-Flagler, with a focus on the school’s international ...
(Date:6/24/2016)... ... 2016 , ... While the majority of commercial spectrophotometers and fluorometers use the ... models are higher end machines that use the more unconventional z-dimension of 20mm. ... the bottom of the cuvette holder. , FireflySci has developed several Agilent flow ...
(Date:6/23/2016)... , June 23, 2016 /PRNewswire/ - FACIT ... Ontario biotechnology company, Propellon Therapeutics ... development and commercialization of a portfolio of first-in-class ... Epigenetic targets such as WDR5 represent an exciting ... significantly in precision medicine for cancer patients. Substantial ...
Breaking Biology Technology: