Navigation Links
Learning from the linker
Date:2/6/2013

Mature cells can be reprogrammed to pluripotency and thus regain the ability to divide and differentiate into specialized cell types. Although these so-called induced pluripotent stem cells (iPS cells) represent a milestone in stem cell research, many of the biochemical processes that underlie reprogramming are still not understood. Scientists from the EMBL Hamburg and from the Max Planck Institute for Molecular Biomedicine in Mnster, Germany now shed new light on this process. In a study published today in Nature Cell Biology, the scientists describe important details about the structure of the transcription factor Oct4, known to play a crucial role in the reprogramming of terminally differentiated cells. The study broadens the knowledge about the reprogramming of cells and may pave the way for medical applications in the field of regenerative medicine and drug discovery.

The transcription factor Oct4 is a protein that binds to DNA and controls the genes involved in reprogramming the cells. The team at EMBL Hamburg has now been able to resolve the crystal structure of Oct4 using high-intensity X-ray beams. In particular, their analysis focused on a previously unexplored linker sequence between two DNA binding elements of the protein. "The uniqueness of the linker has caught our attention for more than a decade and, thus, we are extremely pleased to see it for the first time, helping us rationalize its function in reprogramming cells to pluripotency" says Matthias Wilmanns who led the work in Hamburg.

The authors suggest that the linker recruits key partners to the Oct4 target genes, without whom the process of reprogramming cannot be completed. Colleagues at the Max Planck Institute for Molecular Biomedicine led by Hans Schler supported these findings with studies on the modifications of the linker. They showed that changes in the sequence of the linker led to the loss of Oct4's reprogramming activity, and that a single residue mutation has major effects on the protein interface and thus affects the recruiting of key partners.

"Our work shows how unique the Oct4 interface is and how crucial it is for reprogramming to pluripotency. These are vital steps forward in our understanding of cell reprogramming and could lead us to new applications in the fields of drug discovery and tissue engineering" said Hans Schler. Ongoing research will help determine an integrated picture on how Oct4 acts in the context of many other protein components in stem cell pluripotency.


'/>"/>

Contact: Isabelle Kling
isabelle.kling@embl.de
49-622-138-78355
European Molecular Biology Laboratory
Source:Eurekalert

Related biology news :

1. Majority-biased learning
2. Awake mental replay of past experiences critical for learning
3. Dartmouth researchers are learning how exercise affects the brain
4. Songbirds learning hub in brain offers insight into motor control
5. New Genetics educational resource promotes active learning
6. New model gives hands-on help for learning the secrets of molecules
7. Learning faster with neurodegenerative disease
8. Learning from each other -- growing together
9. Sleep-deprived bees have difficulty relearning
10. Learning a new sense
11. Learning whos the top dog: Study reveals how the brain stores information about social rank
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/19/2017)... 19, 2017 Sensory Inc ., ... security for consumer electronics, and i ... and cybersecurity solutions, today announced a global partnership ... institutions worldwide to bolster security of data sensitive ... user authentication platforms they offer, innerCore now offers ...
(Date:1/18/2017)... MINNETONKA, Minn. , Jan. 18, 2017 /PRNewswire/ ... eClinical technology company that supports the entire spectrum ... 2016 has been another record-breaking year for the ... and market interest in MedNet,s eClinical products and ... to the tremendous marketplace success of ...
(Date:1/12/2017)... , Jan. 12, 2017  Trovagene, Inc. (NASDAQ: ... (ctDNA) technologies, today announced that it has signed agreements ... and the Middle East ... milestone marks the first wave of international distribution agreements ... and blood samples. The initial partners will ...
Breaking Biology News(10 mins):
(Date:2/15/2017)... ... February 15, 2017 , ... ... and Chief Commercial Officer with GenePeeks. Matt is a veteran life sciences ... a computational genomics company focused on identifying inherited disease risk in future generations. ...
(Date:2/15/2017)... , 15. Februar 2017  Trianni, Inc. („TRIANNI") ... Inc. (Janssen) eine Lizenzvereinbarung über die Verwendung der ... führenden Plattform für die Entdeckung monoklonaler Antikörper. ... neuartiges chimäres Gensegmentdesign aus, das Janssen den ... Antikörpern bietet und das für die schelle Isolierung ...
(Date:2/15/2017)... 15, 2017  Vanda Pharmaceuticals Inc. (Vanda) (NASDAQ: ... the fourth quarter and full year ended December ... year for Vanda as we continued to demonstrate ... long-term exclusivity for Fanapt," said Mihael H. Polymeropoulos, ... emerging pipeline with important 2017 milestones underscores Vanda,s ...
(Date:2/15/2017)... , Feb. 15, 2017 Windtree Therapeutics, ... focused on developing aerosolized KL4 surfactant therapies for respiratory ... a slide presentation) at 8:00 AM EST on Thursday, ... phase 2 clinical program, the recently announced closing of ... development activities. To participate in the live ...
Breaking Biology Technology: