Navigation Links
Lean and mean biomass-degrading fungus reveals capabilities for improved biofuel production

WALNUT CREEK, CAThe bane of military quartermasters may soon be a boon to biofuels producers. The genome analysis of a champion biomass-degrading fungus has revealed a surprisingly minimal repertoire of genes that it employs to break down plant cell walls, highlighting opportunities for further improvements in enzymes customized for biofuels production. The results were published online May 4 in Nature Biotechnology by a team of government, academic, and industry researchers led by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and Los Alamos National Laboratory (LANL).

The discovery of Trichoderma reesei, the target of the published analysis, dates back to World War II, when it was identified as the culprit responsible for the deterioration of fatigues and tents in the South Pacific. This progenitor strain has since yielded variants for broad industrial applications and is known today as an abundant source of enzymes, particularly cellulases and hemicellulases, currently being explored to catalyze the deconstruction of plant cell walls as a first step towards the production of biofuels from lignocellulose.

The information generated from the genome of T. reesei provides us with a roadmap for accelerating research to optimize fungal strains for reducing the current prohibitively high cost of converting lignocellulose to fermentable sugars, said Eddy Rubin, DOE JGI Director and one of the papers senior authors. Improved industrial enzyme cocktails from T. reseei and other fungi will enable more economical conversion of biomass from such feedstocks as the perennial grasses Miscanthus and switchgrass, wood from fast-growing trees like poplar, agricultural crop residues, and municipal waste, into next-generation biofuels. Through these incremental advances, we hope to eventually supplant the gasoline-dependent transportation sector of our economy with a more carbon-neutral strategy.

For millennia, civilization has long relied on natures bounty for shelter and sustenance, with cheap and plentiful supplies of fossil fuels powering the economic engine of the industrial age, leading to the broad diversity of products synthesized from petroleum. With rising concern about dependence on imported oil for transportation, the 21st century is signaling a shift towards white or industrial biotechnologyharnessing the metabolic processes of microbes to address energy challenges.

The research team compared the 34-million-nucleotide genome of T. reesei with 13 previously characterized fungi and discovered something counterintuitive. Despite its reputation as an avid plant polysaccharide degrader, T. reesei, was found to have the smallest inventory of genes powering its robust degradation machinery.

We were aware of T. reeseis reputation as a producer of massive quantities of degrading enzymes, however we were surprised by how few enzyme types it produces, which suggested to us that its protein secretion system is exceptionally efficient, said Diego Martinez, the studys lead author and researcher supported by DOE JGI at LANL, and at the University of New Mexico. Subsequently, he and his colleagues turned their attention to the complexities of T. reeseis secretory pathway components, which they had a hunch played an important role in the organisms success.

While little appears to have changed in the secretion machinery since divergence with a common ancestor with yeast, said Martinez, there are some intriguing differences in the way T. reesei processes some protein bonds important for cellulase production.

In their comparative analysis of T. reesei with other fungi, the team observed clustering of carbohydrate-active enzyme genes, which suggested a specific biological role: polysaccharide degradation. While plant tissues are not likely the main source of nutrients for T. reesei, upon detection of cellulose and hemicellulose it seems that the organization of these degrading genes may be the key to a rapid response, said Martinez.

The sequencing of the Trichoderma reesei genome is a major step towards using renewable feedstocks for the production of fuels and chemicals, said Joel Cherry, director of research activities in second-generation biofuels for Novozymes, one of the collaborating institutions on the study. This soft rot fungus serves as the worlds most prodigious producer of cellulases and is already a dominant source of a wide variety of cellulase products for the textile industry worldwide. It is also the organism of choice for producing enzymes for the breakdown of cellulosic biomass to fermentable sugars, which can then be biologically converted to fuels and chemical building blocks. The information contained in its genome will allow us both to better understand how this organism degrades cellulose so efficiently and to understand how it produces the required enzymes so prodigiously. Using this information, it may be possible to improve both of these properties, decreasing the cost of converting cellulosic biomass to fuels and chemicals.


Contact: David Gilbert
DOE/Joint Genome Institute

Related biology news :

1. Smithsonians National Museum of Natural History reveals ants as fungus farmers
2. Killer fungus spells disaster for wheat
3. Evolution of the sexes: What a fungus can tell us
4. Scientists find missing evolutionary link using tiny fungus crystal
5. Scientists complete genome sequence of fungus responsible for dandruff, skin disorders
6. Fungus genome yielding answers to protect grains, people and animals
7. First nanoscale image of soil reveals an incredible variety, rich with patterns
8. Power of molecular imaging reveals secrets of the heart
9. Isotope analysis reveals foraging area dichotomy for Atlantic leatherback turtles
10. Mantis shrimp vision reveals new way that animals can see
11. Research at Argonnes Advanced Photon Source reveals structure and behavior of collagen
Post Your Comments:
Related Image:
Lean and mean biomass-degrading fungus reveals capabilities for improved biofuel production
(Date:11/17/2015)... , November 17, 2015 Paris ...   --> Paris from 17 th ... DERMALOG, the biometrics innovation leader, has invented the first combined ... on the same scanning surface. Until now two different scanners ... one scanner can capture both on the same surface. ...
(Date:11/12/2015)... golden retriever that stayed healthy despite having the gene ... new lead for treating this muscle-wasting disorder, report scientists ... and Harvard and the University of São Paolo in ... pinpoints a protective gene that boosts muscle regeneration, ... Children,s lab of Lou Kunkel , PhD, is ...
(Date:11/10/2015)... NEW YORK , Nov. 10, 2015 /PRNewswire/ ... refers to behavioral biometrics that helps to identify ... prevent fraud. Signature is considered as the secure ... for the identification of a particular individual because ... offers more accurate results especially when dynamic signature ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... ... November 24, 2015 , ... International Society ... one of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The ... where ISPE hosted the largest number of attendees in more than a decade. ...
(Date:11/24/2015)... PUNE, India , November 24, 2015 ... to a new market research report "Oligonucleotide Synthesis Market ... Equipment), Application (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User ... to 2020", published by MarketsandMarkets, the market is expected ... 1,078.1 Million in 2015, at a CAGR of 10.1% ...
(Date:11/24/2015)... 24, 2015 SHPG ) announced today that ... Piper Jaffray 27 th Annual Healthcare Conference in ... at 8:30 a.m. EST (1:30 p.m. GMT). --> SHPG ... will participate in the Piper Jaffray 27 th Annual Healthcare ... Tuesday, December 1, 2015, at 8:30 a.m. EST (1:30 p.m. GMT). ...
(Date:11/24/2015)... QUEBEC CITY , Nov. 24, 2015 /PRNewswire/ ... (the "Company") announced today that the remaining 11,000 ... Common Share Purchase Warrants (the "Series B Warrants") ... agreement were exercised on November 23, 2015, which ... Common Shares.  After giving effect to the issuance ...
Breaking Biology Technology: