Navigation Links
Lean and mean biomass-degrading fungus reveals capabilities for improved biofuel production
Date:5/4/2008

WALNUT CREEK, CAThe bane of military quartermasters may soon be a boon to biofuels producers. The genome analysis of a champion biomass-degrading fungus has revealed a surprisingly minimal repertoire of genes that it employs to break down plant cell walls, highlighting opportunities for further improvements in enzymes customized for biofuels production. The results were published online May 4 in Nature Biotechnology by a team of government, academic, and industry researchers led by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and Los Alamos National Laboratory (LANL).

The discovery of Trichoderma reesei, the target of the published analysis, dates back to World War II, when it was identified as the culprit responsible for the deterioration of fatigues and tents in the South Pacific. This progenitor strain has since yielded variants for broad industrial applications and is known today as an abundant source of enzymes, particularly cellulases and hemicellulases, currently being explored to catalyze the deconstruction of plant cell walls as a first step towards the production of biofuels from lignocellulose.

The information generated from the genome of T. reesei provides us with a roadmap for accelerating research to optimize fungal strains for reducing the current prohibitively high cost of converting lignocellulose to fermentable sugars, said Eddy Rubin, DOE JGI Director and one of the papers senior authors. Improved industrial enzyme cocktails from T. reseei and other fungi will enable more economical conversion of biomass from such feedstocks as the perennial grasses Miscanthus and switchgrass, wood from fast-growing trees like poplar, agricultural crop residues, and municipal waste, into next-generation biofuels. Through these incremental advances, we hope to eventually supplant the gasoline-dependent transportation sector of our economy with a more carbon-neutral strategy.

For millennia, civilization has long relied on natures bounty for shelter and sustenance, with cheap and plentiful supplies of fossil fuels powering the economic engine of the industrial age, leading to the broad diversity of products synthesized from petroleum. With rising concern about dependence on imported oil for transportation, the 21st century is signaling a shift towards white or industrial biotechnologyharnessing the metabolic processes of microbes to address energy challenges.

The research team compared the 34-million-nucleotide genome of T. reesei with 13 previously characterized fungi and discovered something counterintuitive. Despite its reputation as an avid plant polysaccharide degrader, T. reesei, was found to have the smallest inventory of genes powering its robust degradation machinery.

We were aware of T. reeseis reputation as a producer of massive quantities of degrading enzymes, however we were surprised by how few enzyme types it produces, which suggested to us that its protein secretion system is exceptionally efficient, said Diego Martinez, the studys lead author and researcher supported by DOE JGI at LANL, and at the University of New Mexico. Subsequently, he and his colleagues turned their attention to the complexities of T. reeseis secretory pathway components, which they had a hunch played an important role in the organisms success.

While little appears to have changed in the secretion machinery since divergence with a common ancestor with yeast, said Martinez, there are some intriguing differences in the way T. reesei processes some protein bonds important for cellulase production.

In their comparative analysis of T. reesei with other fungi, the team observed clustering of carbohydrate-active enzyme genes, which suggested a specific biological role: polysaccharide degradation. While plant tissues are not likely the main source of nutrients for T. reesei, upon detection of cellulose and hemicellulose it seems that the organization of these degrading genes may be the key to a rapid response, said Martinez.

The sequencing of the Trichoderma reesei genome is a major step towards using renewable feedstocks for the production of fuels and chemicals, said Joel Cherry, director of research activities in second-generation biofuels for Novozymes, one of the collaborating institutions on the study. This soft rot fungus serves as the worlds most prodigious producer of cellulases and is already a dominant source of a wide variety of cellulase products for the textile industry worldwide. It is also the organism of choice for producing enzymes for the breakdown of cellulosic biomass to fermentable sugars, which can then be biologically converted to fuels and chemical building blocks. The information contained in its genome will allow us both to better understand how this organism degrades cellulose so efficiently and to understand how it produces the required enzymes so prodigiously. Using this information, it may be possible to improve both of these properties, decreasing the cost of converting cellulosic biomass to fuels and chemicals.


'/>"/>

Contact: David Gilbert
degilbert@lbl.gov
925-296-5643
DOE/Joint Genome Institute
Source:Eurekalert  

Related biology news :

1. Smithsonians National Museum of Natural History reveals ants as fungus farmers
2. Killer fungus spells disaster for wheat
3. Evolution of the sexes: What a fungus can tell us
4. Scientists find missing evolutionary link using tiny fungus crystal
5. Scientists complete genome sequence of fungus responsible for dandruff, skin disorders
6. Fungus genome yielding answers to protect grains, people and animals
7. First nanoscale image of soil reveals an incredible variety, rich with patterns
8. Power of molecular imaging reveals secrets of the heart
9. Isotope analysis reveals foraging area dichotomy for Atlantic leatherback turtles
10. Mantis shrimp vision reveals new way that animals can see
11. Research at Argonnes Advanced Photon Source reveals structure and behavior of collagen
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Lean and mean biomass-degrading fungus reveals capabilities for improved biofuel production
(Date:1/6/2017)... -- Delta ID Inc., a leader in consumer-grade iris scanning ... CES® 2017. Delta ID has collaborated with Gentex Corporation ... of iris scanning as a secure, reliable and convenient ... car, and as a way to elevate the security ... ID and Gentex will demonstrate (booth #7326 LVCC) a ...
(Date:1/3/2017)... LAS VEGAS , Jan. 3, 2017 ... announced the introduction of Onitor Track, an innovative biometric ... and men, showcasing this month at the 2017 Consumer ... . In the U.S., the World ... affect more than two-thirds of adults who are overweight ...
(Date:12/20/2016)... , Dec. 20, 2016 The ... sharing, rental and leasing is stoking significant interest ... radio frequency technology, Bluetooth low energy (BLE), biometrics ... as the next wave of wireless technologies in ... access system to advanced access systems opens the ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... ... January 12, 2017 , ... Each year, Crain’s Detroit Business News ranks the ... evaluates the patent estate of a company, its impact and significance, and the likelihood ... the way in technologies that transform energy sources such as low dose X-ray and ...
(Date:1/12/2017)... ... January 12, 2017 , ... After ... Lisa Rosendahl’s doctors gave her only a few months to live. Now a ... that has stabilized Rosendahl’s disease and increased both the quantity and quality of ...
(Date:1/12/2017)... and Pune, India , January 12, 2017 ... Toxicity Testing Market by Type and End Users - Global Opportunity Analysis and Industry ... million by 2022 from $2,921 million in 2015, growing at a CAGR of 15.07% ... ... Allied Market Research Logo ...
(Date:1/11/2017)... Colo. (PRWEB) , ... January 11, 2017 , ... ... the journal Clinical Cancer Research show early promise of the investigational anti-cancer agent ... despite a median 5 previous treatment regimens. Twenty-seven percent of these heavily pretreated ...
Breaking Biology Technology: