Navigation Links
Leaf chewing links insect diversity in modern and ancient forests

Observations of insects and their feeding marks on leaves in modern forests confirm indications from fossil leaf deposits that the diversity of chewing damage relates directly to diversity of the insect population that created it, according to an international team of researchers.

"The direct link between richness of leaf-chewing insects and their feeding damage across host plants in two tropical forests validates the underlying assumptions of many paleobiological studies that rely on damage-type richness as a means to infer changes in relative herbivore richness through time," the researchers report in today's (May 2) issue of a.

Studies of leaf chewing include observation of the leaves, but rarely include all the insects that actually made the marks. Mnica R. Carvalho, graduate student, Cornell University and Peter Wilf, professor of geosciences, Penn State, and colleagues looked at leaf predation in two tropical forests in Panama to test for a relationship between the richness of leaf-chewing insects and the leaf damage that the same insects induce.

Using Smithsonian Tropical Research Institute canopy-access cranes and working in the dark at almost 200 feet high in the treetops at new moon during two summers the researchers collected a total of 276 adult and immature leaf-chewing insects of 156 species. While the largest category of insect was beetles, leaf chewers among grasshoppers, stick insects and caterpillars, as well as a few ants, were also collected.

The team also collected fresh leaves of the insects' host plants and placed the insects in feeding experiment bags with these leaves. They allowed adult insects to feed for two to three days and immature stages to feed until full maturity when possible. The researchers then classified the damage to the leaves into categories, in the same way they catalog fossil leaf- chewing damage.

"This is the first attempt to compare leaf-chewing damage inflicted by many kinds of living insects on many kinds of plants throughout a large forest area, both to the culprit insects and to the leaf damage we see in the fossil record," said Carvalho. "We mounted 276 of the insects with their damaged leaves and deposited them in the STRI Insect Collection."

This collection is the only known vouchered collection of diverse, identified insects and their feeding damage on leaves of identified plant hosts.

The number of collected insect species correlated strongly with the number of damage types recorded in canopy leaves of 24 tree and liana species observed in the feeding experiments. This suggests that the number of types of damage seen in the fossil record is also related to the actual diversity of damage-making insects.

The researchers also compared the modern leaf data to fossil data from Colombia, Argentina, the Great Plains and the Rocky Mountains. They found that the distribution of chewing marks was the same across both modern and ancient settings, showing a striking consistency in how insects have divided up their leaf resources since at least the end of the age of dinosaurs.

"In the fossil record we frequently find a decrease in damage-type richness during cooling events and after extinctions and an increase in damage-type richness during warming events and post-extinction recovery," said Wilf. "Usually, insect body-fossils from these critical time intervals are absent or very rare, so we rely on the insect-damaged leaves to tell the story. These fossil studies have been considered tremendously important for understanding how ecosystems have responded, and will respond, to climate change and disturbance. We now have direct observational evidence that the fossil data represent changes in actual insect richness and no longer need to infer this through deduction alone."

"This work also unlocks the potential to use insect damage as a new way to assess living insect richness, as in the fossil record, in the context of climate change," said Carvalho. "We used fossils to frame a hypothesis about how the world works, today and through time, and discovered in the living tropical rainforest that the hypothesis is correct. More kinds of chewing marks means more kinds of insects."


Contact: A'ndrea Elyse Messer
Penn State

Related biology news :

1. Biting vs. chewing
2. Chewing their way to success
3. How chewing gum or a shed hair can let strangers read your Book of Life
4. New discovery: Molecule links asthma and cancer and could aid in developing new treatments
5. Prostate cancer and blood lipids share genetic links
6. New study links inflammation in those with PTSD to changes in microRNA
7. UT Arlington study links BPA and breast cancer tumor growth
8. Health Affairs examines successes and missing links in connected health
9. New study reveals links between alcoholic liver disease and the circadian clock
10. NPL links up with GlaxoSmithKline to support research into new medicines
11. Ardi skull reveals links to human lineage
Post Your Comments:
Related Image:
Leaf chewing links insect diversity in modern and ancient forests
(Date:11/9/2015)... SAN JOSE, Calif. , Nov. 9, 2015 /PRNewswire/ ... of human interface solutions, today announced broader entry into ... of vehicle-specific solutions that match the pace of consumer ... drivers, and biometric sensors are ideal for the automotive ... the vehicle. Europe , ...
(Date:10/29/2015)... 29, 2015   MedNet Solutions , an innovative ... of clinical research, is pleased to announce that it ... (MHTA) as one of only three finalists for a ... Small and Growing" category. The Tekne Awards honor ... superior technology innovation and leadership. iMedNet™ ...
(Date:10/29/2015)... ANN ARBOR, Mich. , Oct. 29, 2015 ... with Eurofins Genomics for U.S. distribution of its ... DNA-seq kit and Rubicon,s new ThruPLEX Plasma-seq ... DNA to enable the preparation of NGS libraries ... in plasma for diagnostic and prognostic applications in ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... November 25, 2015 The ... is a professional and in-depth study on the ...      (Logo: ) , ... industry including definitions, classifications, applications and industry chain ... the international markets including development trends, competitive landscape ...
(Date:11/24/2015)... Nov. 24, 2015 Halozyme Therapeutics, Inc. (NASDAQ: HALO ... New York on Wednesday, December 2 at ... , president and CEO, will provide a corporate overview. ... at 1:00 p.m. ET/10:00 a.m. PT . ... will provide a corporate overview. --> th Annual ...
(Date:11/24/2015)... RALEIGH, N.C. , Nov. 24, 2015  Clintrax Global, Inc., ... Raleigh, North Carolina , today announced that the company has ... earnings represented a 391% quarter on quarter growth posted for Q3 ... Kingdom and Mexico , with the ... place in December 2015. --> United Kingdom ...
(Date:11/24/2015)... New York , November 24, 2015 ... to a recent market research report released by Transparency ... projected to expand at a CAGR of 17.5% during ... "Non-invasive Prenatal Testing Market - Global Industry Analysis, Size, ... estimates the global non-invasive prenatal testing market to reach ...
Breaking Biology Technology: