Navigation Links
Lead-flapping objects experience less wind resistance than their trailing counterparts
Date:11/10/2008

It is commonly known that racing cars and bicyclists can reduce air resistance by following closely behind a leader, but researchers from New York University and Cornell University have found the opposite is true with flapping objects, such as flags. Their study, published in the most recent issue of the journal Physical Review Letters, discovered that in a series of flags, the leading flag faces significantly less resistance than do succeeding flags. The finding may alter our understanding of how living flapping creatures, such as birds or fish, move through the air and water.

"Inspired by schooling fish and flocking birds, we studied how flapping flags alter fluid drag forces, or resistance that moving objects face, on one another when grouped together," said Jun Zhang, an associate professor in NYU's Physics Department and its Courant Institute of Mathematical Sciences and a co-author of the study. "To our surprise, we discovered that the leading flag enjoys a drag reduction of up to 50 percent while its downstream neighbor suffers a significant drag increase. If this effect applies to fish schools and bird flocks, the leaders would also have a reduced burden and spend less energy as they swim or fly."

The finding is the first of its kind on fluid flow. All previous studies on rigid objects in a moving fluid show the exact opposite result: the leading object must overcome greater drag forces than the followers.

"Our finding is thus a dramatic violation of our common sense about fluids and structures," Zhang explained.

In the study, the researchers sought to simulate flags flying under windy conditions by inserting flexible filaments ("the flag") to a wire ("the flagpole"). To model wind, they placed the model flag into a flowing soap film. Because the filaments are flexible and massive, they spontaneously flap under the fluid, reacting as flags would in a natural breeze.

Under different flow conditions, Zhang and his co-author Leif Ristroph, a doctoral candidate in Cornell's Department of Physics, first calculated the resistance faced by a single flag. They subsequently determined the resistance faced by two flags in tandem.

They found that the leading flag always suffered less drag, or resistance, than did the trailing flag. In addition, they also reported that the leading flag in a tandem of flags experienced less drag than a flag in isolation. Both results are contrary to existing research on fluid force.

The trailing flag acts as a splitting plate that restricts the lateral motion of the oncoming flow, the researchers said in explaining their results. This effect indirectly reduces the motion of the leading flag, which makes the appearance of the leader smaller than usual, yielding less drag. By contrast, the trailing flapping body, which flaps in the oscillating wake of the first, has greater flapping amplitude due to the resonate effect of this wake. This larger appearance in a flow translates to a greater drag.


'/>"/>

Contact: James Devitt
james.devitt@nyu.edu
212-998-6808
New York University
Source:Eurekalert

Related biology news :

1. How we see objects in depth: The brains code for 3-D structure
2. Robot fetches objects with just a point and a click
3. A call to infuse scientific knowledge into the human experience
4. Wild chimpanzees appear not to regularly experience menopause
5. Family conditions may affect when girls experience puberty
6. Montana State University researchers find gene that regulates molds resistance to drugs
7. New estrogen receptor found to be key player in tamoxifen resistance
8. Breast cancer treatment resistance linked to signaling pathway
9. Lab study shows methadone breaks resistance in untreatable forms of leukemia
10. How hidden mutations contribute to HIV drug resistance
11. Genetic cause of innate resistance to HIV/AIDS
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/4/2017)... a global clinical research organization (CRO), announces the launch of Shadow, ... 2017. Shadow is designed to assist medical writers and biometrics teams ... European Medicines Agency (EMA) in meeting the requirements for de-identifying clinical ... ... Tom ...
(Date:6/30/2017)... Today, American Trucking Associations announced Seeing ... and eye tracking software, became the newest member ... "Artificial intelligence and advanced sensing algorithms ... driver,s attentiveness levels while on the road.  Drivers ... fatigue and prevent potential accidents, which could lead ...
(Date:5/16/2017)... 16, 2017  Veratad Technologies, LLC ( www.veratad.com ), ... and identity verification solutions, announced today they will participate ... May 15 thru May 17, 2017, in ... Trade Center. Identity impacts the lives ... today,s quickly evolving digital world, defining identity is critical ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced that ... SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 ... cross the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... company advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that ... Polymerized Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los ...
(Date:10/10/2017)... ... 10, 2017 , ... Dr. Bob Harman, founder and CEO of VetStem ... The event entitled “Stem Cells and Their Regenerative Powers,” was held ... Harman, DVM, MPVM was joined by two human doctors: Peter B. Hanson, M.D., Chief ...
(Date:10/10/2017)... 2017 SomaGenics announced the receipt of a ... RealSeq®-SC (Single Cell), expected to be the first commercially ... microRNAs) from single cells using NGS methods. The NIH,s ... accelerate development of approaches to analyze the heterogeneity of ... techniques for measuring levels of mRNAs in individual cells ...
Breaking Biology Technology: