Navigation Links
Lawrence Livermore helps find link to arsenic-contaminated groundwater
Date:3/4/2013

Human activities are not the primary cause of arsenic found in groundwater in Bangladesh.

Instead, a team of researchers from Lawrence Livermore National Laboratory, Barnard College, Columbia University, University of Dhaka, Desert Research Institute and University of Tennessee found that the arsenic in groundwater in the region is part of a natural process that predates any recent human interaction, such as intensive pumping.

The results appear in the March 4 edition of the Proceedings of the National Academy of Sciences.

Millions of people in Bangladesh and neighboring countries are chronically exposed to arsenic-contaminated groundwater, which causes skin lesions and increases the risk of certain cancers. Bacterial respiration of organic carbon releases naturally-occurring arsenic from sediment into groundwater, but the source of this organic carbon remains unclear.

Brian Mailloux of Barnard College and his team isolated microbial DNA from several depth intervals in arsenic-contaminated aquifers in Bangladesh and analyzed the DNA's radiocarbon signature, which reflects whether the organic carbon used by the microbes derives primarily from younger, surface-derived sources that are transported by groundwater into the aquifers, or older, sediment-derived sources.

Using "bomb pulse" radiocarbon analysis, Lawrence Livermore scientist Bruce Buchholz dated the DNA of groundwater bacteria. He found that the DNA samples were consistently younger than the sediment, suggesting that the microbes favor using surface-derived carbon.

The surface-derived carbon has flowed into the aquifer over hundreds to thousands of years -- a rate that is approximately 100 times slower than groundwater flow. The results suggest that recent human activities, such as intensive groundwater pumping, have not yet significantly affected the release of arsenic into the groundwater at this site.

Above-ground testing of nuclear weapons during the Cold War (1955-1963) caused a surge in global levels of carbon-14 (14C), and remains in all living things. Carbon-14 or radiocarbon is naturally produced by cosmic ray interactions with air and is present at low levels in the atmosphere and food. Although nuclear weapon testing was conducted at only a few locations, excess levels of 14C in the atmosphere rapidly dispersed and equalized around the globe.

According to Buchholz, "The bomb curve forms a chronometer of the past 60 years."

The radiocarbon signature of DNA is a direct measure of the carbon used during microbial respiration and growth. In this study, the team developed a method to filter, extract and purify DNA from groundwater aquifers for radiocarbon analysis to determine the organic carbon pools fueling microbial reduction.

"We were able to separate the recent bomb pulse radiocarbon from the natural carbon signature and found the arsenic levels are now directly tied to a natural process as opposed to being driven by human activities," Buchholz said.

The results may help scientists understand the causes of arsenic contamination in the region, and the development of potential mitigation strategies.


'/>"/>

Contact: Anne Stark
stark8@llnl.gov
925-422-9799
DOE/Lawrence Livermore National Laboratory
Source:Eurekalert

Related biology news :

1. The American Society for Microbiology honors Lawrence Corey
2. Protein jailbreak helps breast cancer cells live
3. Newly found protein helps cells build tissues
4. New iPad, iPhone app helps mariners avoid endangered right whales
5. University of Minnesota invention helps advance reliability of alternative energy
6. New analysis helps guide use of erlotinib in advanced non-small cell lung cancer
7. Gene signature helps identify risk of relapse in lung cancer patients
8. Clinical trial launches to see whether vitamin D helps treat multiple sclerosis
9. Scripps research scientists find anticonvulsant drug helps marijuana smokers kick the habit
10. New musical pacifier helps premature babies get healthy
11. Worlds largest release of comprehensive human cancer genome data helps speed discoveries
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
(Date:4/15/2016)... , April 15, 2016 ... "Global Gait Biometrics Market 2016-2020,"  report to their ... ) , ,The global gait biometrics market ... 13.98% during the period 2016-2020. Gait ... which can be used to compute factors that ...
(Date:3/31/2016)... , March 31, 2016  Genomics firm Nabsys ... founding CEO, Barrett Bready , M.D., who returned ... of the original technical leadership team, including Chief Technology ... of Product Development, Steve Nurnberg and Vice President of ... to the company. Dr. Bready served as ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/24/2016)... 24, 2016 Epic Sciences unveiled a ... susceptible to PARP inhibitors by targeting homologous recombination ... The new test has already been incorporated into ... cancer types. Over 230 clinical trials ... pathways, including PARP, ATM, ATR, DNA-PK and WEE-1. ...
(Date:6/23/2016)... 23, 2016   Boston Biomedical , an ... designed to target cancer stemness pathways, announced that ... Orphan Drug Designation from the U.S. Food and ... cancer, including gastroesophageal junction (GEJ) cancer. Napabucasin is ... inhibit cancer stemness pathways by targeting STAT3, and ...
(Date:6/23/2016)... -- The Prostate Cancer Foundation (PCF) is pleased to announce 24 new ... prostate cancer. Members of the Class of 2016 were selected from a pool ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
Breaking Biology Technology: