Navigation Links
Landmark study opens door to new cancer, aging treatments
Date:8/31/2008

(PHILADELPHIA)Researchers at The Wistar Institute have deciphered the structure of the active region of telomerase, an enzyme that plays a major role in the development of nearly all human cancers. The landmark achievement opens the door to the creation of new, broadly effective cancer drugs, as well as anti-aging therapies.

Researchers have attempted for more than a decade to find drugs that shut down telomerasewidely considered the No. 1 target for the development of new cancer treatmentsbut have been hampered in large part by a lack of knowledge of the enzyme's structure.

The findings, published online August 31 in Nature, should help researchers in their efforts to design effective telomerase inhibitors, says Emmanuel Skordalakes, Ph.D., assistant professor in Wistar's Gene Expression and Regulation Program, who led the study.

"Telomerase is an ideal target for chemotherapy because it is active in almost all human tumors, but inactive in most normal cells," Skordalakes says. "That means a drug that deactivates telomerase would likely work against all cancers, with few side effects."

The study elucidates the active region of telomerase and provides the first full-length view of the telomerase molecule's critical protein component. It reveals surprising details, at the atomic level, of the enzyme's configuration and how it works to replicate the ends of chromosomesa process critical to both tumor development and the aging process.

Achieving immortality

In humans, telomerase adds multiple repeats of a short DNA sequence to the ends of chromosomes, known as telomeres, thus preventing damage and the loss of genetic information during cell division.

When telomerase is dormant, telomeres shorten each time a cell divides, leading eventually to genetic instability and cell death. By preserving chromosomes' integrity, telomerase allows cells to continue living and dividing. The enzyme is active in cells that multiply frequently, such as embryonic stem cells, but is switched off almost entirely in normal adult cells to prevent the dangers of runaway cell proliferation.

Cancer cells, however, often regain the ability to activate telomerase, which has been implicated in 90 percent of human tumors. The enzyme permits cells to replicate indefinitely and achieve the cellular "immortality" that is the hallmark of cancer. Deactivating telomerase would stop tumor growth.

In addition to its role in cancer, telomerase holds significant implications for the development of therapies to combat aging and other age-related diseases. Finding ways to activate telomerase under controlled conditions and allow some cells to begin dividing again could result in healthier, younger-looking tissue that lives longer.

An elusive enzyme

Telomerase is a complex structure made up of multiple protein domains and a stretch of RNA, which contains the template the enzyme uses to synthesize telomeres.

Last year, Skordalakes and his team solved the structure of a key segment of the moleculethe so-called TRBD domain, where RNA binding occurs. However, the complexity of telomerase has proved a roadblock to determining the enzyme's overall architecturea goal pursued by researchers worldwide for more than 15 years.

To perform the necessary studies, scientists first must gather large quantities of the enzyme in a specific conformation. Because the complex structure of telomerase most likely allows it to change configuration, that process has been challenging, Skordalakes says.

To find sufficient quantities of the enzyme for the study, Skordalakes and his team looked beyond commonly relied-on sources such as humans and yeast. By screening a wide variety of organisms, including protozoa and insects, they discovered that a gene from the red flour beetle could produce telomerase in copious amounts, and a stable form.

"That was really the breakthrough," Skordalakes says. "Once we found that the gene from this organism expressed the protein in the quantities we needed, we were able to move quickly."

The researchers used X-ray crystallography, a technique that analyzes the diffraction patterns of X-rays beamed at crystals of a molecule, to determine the three-dimensional structure of the enzyme's active regionthe catalytic component called telomerase reverse transcriptase protein, or TERT.

The study revealed surprising features, including the fact that the molecule's three domains are organized into a doughnut shape, an unexpected configuration. Knowledge of the structure allowed the researchers to create a model of the enzyme's function.

"It's extremely exciting," Skordalakes says. "For the first time, we can see how telomerase assembles at the end of chromosomes to initiate telomere replication."

Looking ahead

Skordalakes plans to further study TERT and search for new telomerase inhibitors that could become cancer therapies. He also will look at modifying existing drugs. Previous attempts to target telomerase have fallen flat, but knowledge of the enzyme's structure will help researchers to determine the limitations of existing agents and make them more effective.

Skordalakes began his studies of telomerase when he joined The Wistar Institute in 2006 and established his first laboratory. "I've always been interested in understanding, on a molecular level, the function of protein nucleic acid assemblies and using that information in the treatment of human disease," he says. "Telomerase, because of its important role in cancer and aging, was an obvious target for me."

He says though the process was frustrating at times, his team was determined to solve the structure. "It required a lot of perseverance and effort, but we really wanted to do this," he says.


'/>"/>

Contact: Abbey J. Porter
aporter@wistar.org
215-898-3943
The Wistar Institute
Source:Eurekalert

Related biology news :

1. Childrens national co-leads nationwide study of landmark sickle cell treatment
2. Landmark studies assess risk of exposure to elevated levels of EMS confirm clear toxicity threshold
3. SAGE and Hindawi announce landmark open access agreement
4. Safeway Inc. and PCF to fund landmark prostate cancer research collaboration
5. Study shows more genes are controlled by biological clocks
6. Armored fish study helps strengthen Darwins natural selection theory
7. Study says eyes evolved for X-Ray vision
8. Study of islands reveals surprising extinction results
9. Study points to potential new use for Viagra
10. Unique study shows oil, gas seismic work not affecting Gulf sperm whales
11. ETH Zurich study on salmonella self-destruction
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/14/2017)... 14, 2017  Wake Forest Baptist Medical Center today ... chief executive officer (CEO). Freischlag joins the medical center ... McConnell , M.D., who last year announced that he ... Center, after leading it since 2008.   ... Wake Forest Baptist,s academic health system, which includes Wake ...
(Date:2/9/2017)... The biomass boiler market report by Transparency ... market globally in terms of revenue (US$ Mn) based ... for biomass boilers has been segmented on the basis ... The market based on feedstock type, has been segmented ... energy crops, urban residues, and others. On the basis ...
(Date:2/8/2017)... 2017 The biometrics market has reached ... of organizations, desires to better authenticate or identify ... and challenge questions), biometrics is quickly working its ... market is driven by use cases, though there ... enterprise uses cases, with consumer-facing use cases encompassing ...
Breaking Biology News(10 mins):
(Date:2/23/2017)... Baltimore, Maryland (PRWEB) , ... ... ... firm, PathSensors, Inc., announced today that in a published evaluation of multiple ... (PNNL), a U.S. Department of Energy Laboratory, PathSensors’ CANARY® biosensor threat detection ...
(Date:2/23/2017)... LOS ANGELES , Feb. 23, 2017  Capricor Therapeutics, ... cardiac and other medical conditions, today announced that Linda Marbán, ... at two upcoming investor conferences: Cowen ... 2017 at 10:00 am ET Boston, MA ... 14, 2017 at 9:00 am PT (12:00 pm ET) ...
(Date:2/22/2017)... , Feb. 22, 2017  Aratana Therapeutics, Inc. (NASDAQ: PETX), ... commercialization of innovative biopharmaceutical products for companion animals, will host ... 8:30 a.m. ET to discuss financial results from the fourth ... Interested participants and investors may access the audio ... ...
(Date:2/22/2017)... , Feb. 22, 2017 Scientists propose ... inflammation and organ damage in Gaucher and maybe other ... risks and lower costs than current therapies. ... Hospital Medical Center , which also included investigators from ... , report their data Feb. 22. The study was ...
Breaking Biology Technology: