Navigation Links
Lack of energy an enemy to antibiotic-resistant microbes
Date:2/11/2013

Rice University researchers "cured" a strain of bacteria of its ability to resist an antibiotic in an experiment that has implications for a long-standing public health crisis.

Rice environmental engineer Pedro Alvarez and his team managed to remove the ability of the Pseudomonas aeruginosa microorganism to resist the antibiotic medication tetracycline by limiting its access to food and oxygen.

Over 120 generations, the starving bacteria chose to conserve valuable energy rather than use it to pass on the plasmid a small and often transmissible DNA element that allows it to resist tetracycline.

The researchers' results, reported this month in the American Chemical Society journal Environmental Science and Technology, are the latest in a long effort to understand the environmental aspects of antibiotic resistance, which threatens decades of progress in fighting disease.

"The propagation of antibiotic resistance has been perceived as a medical or microbiology-related problem," Alvarez said. "And it truly is a serious problem. But what many people miss is that it is also an environmental pollution problem. A lot of the antibiotic-resistant bacteria originate in animal agriculture, where there is overuse, misuse and abuse of antibiotics."

Alvarez contended that confined animal feeding operations (CAFOs) are potential sources of environmental contamination by antibiotics and the associated antibiotic-resistant genes that find their way into the ground, water and ultimately the food supply.

"We started with the hypothesis that microbes don't like to carry excess baggage," he said. "That means they will drop genes they're not using because there is a metabolic burden, a high energy cost, to keeping them."

The Rice researchers tested their theory on two strains of bacteria, P. aeruginosa, which is found in soil, and E. coli, which carries resistant genes directly from animals through their feces into the environment.

By slowly starving them of nutrients and/or oxygen through successive generations, they found that in the absence of tetracycline, both microbes dumped the resistance plasmid, though not entirely in the case of E. coli. But P. aeruginosa completely shed the genetic element responsible for resistance, which made it susceptible once again to antibiotics. When a high level of tetracycline was present, both microbes retained a level of resistance.

One long-recognized problem with antibiotics is that they tend to snatch defeat from the jaws of victory. If any antibiotic-resistant bacteria are part of a biological mix, whether in a person, an animal or in the environment, the weak microbes will die and the resistant will survive and propagate; this process is known by biologists as "selective pressure."

So there is incentive to eliminate the resistance plasmid from bacteria in the environment as close to the source as possible. The experiments point to possible remediation strategies, Alvarez said. "There are practical implications to what we did," he said. "If we can put an anaerobic barrier at the point where a lagoon drains into the environment, we will essentially exert selective pressure for the loss of antibiotic-resistant genes and mitigate the propagation of these factors."

An anaerobic barrier may be as cheap and simple as mulch in the drainage channel, he said. "If you have a CAFO draining through a channel, then put an anaerobic barrier in that channel. A mulch barrier will do." He said a mulch barrier only a meter thick could contact slow-moving groundwater for more than a month. "That may not kill the bacteria, but it's enough to have bacteria notice a deficiency in their ability to obtain energy from the environment and feel the stress to dump resistant genes."

Alvarez has been chipping away at the problem since moving to Rice from the University of Iowa in 2004, even without American funding for research. His study of the Haihe River in China, funded by the Chinese government and published last year, found tetracycline resistance genes are common in the environment there as well. "We tested water and river sediment and couldn't find a sample that didn't have them," he said.

"Our philosophy in environmental engineering is that an ounce of prevention is worth more than a pound of remediation," Alvarez said. "Prevention here is, basically, don't let these genes proliferate. Don't let them amplify in the environment. Stop them before they're released. And one easy way is to put up an anaerobic barrier."


'/>"/>

Contact: David Ruth
david@rice.edu
713-348-6327
Rice University
Source:Eurekalert

Related biology news :

1. Popular energy drinks trigger caffeine jitters
2. Aldi Süd supermarkets -- energy-optimized
3. Photovoltaics beat biofuels at converting suns energy to miles driven
4. Marginal lands are prime fuel source for alternative energy
5. Preventing climate change: The size of the energy challenge
6. Joslin researchers identify important factor in fat storage and energy metabolism
7. WCS applauds Dept. of Interior plan balancing conservation and energy development in NPR-A
8. New online tool estimates carbon and energy impact of trees
9. Energy Deptartment funds UW project to turn wasted natural gas into diesel
10. Stanford geoscientist cites critical need for basic research to unleash promising energy sources
11. An energy conscious workforce: New research looks at how to encourage staff to go green
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2016)... 22, 2016 According ... Market for Consumer Industry by Type (Image, Motion, ... (Communication & IT, Entertainment, Home Appliances, & ... to 2022", published by MarketsandMarkets, the market ... reach USD 26.76 Billion by 2022, at ...
(Date:3/18/2016)... --> --> ... & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance & Detection ... border security market and the continuing migration crisis in the ... has led visiongain to publish this unique report, ... defence & security companies in the border security ...
(Date:3/15/2016)... , March 15, 2016 Yissum ... , the technology-transfer company of the Hebrew University, announced ... of remote sensing technology of various human biological indicators. ... raising $2.0 million from private investors. ... based on the detection of electromagnetic emissions from sweat ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... Elekta is pleased to announce ... industry-leading treatment planning software, is available for clinical release. ... version 5.11 provides significant performance speed enhancements over ... to four times faster than in previous versions of ... standard Monte Carlo algorithm, users ...
(Date:4/28/2016)... ... April 28, 2016 , ... As part ... top industry experts, and expanding its LATAM network and logistics capabilities. Enhancements ... to manage their clinical trial projects. , The expansion will provide unmatched clinical ...
(Date:4/27/2016)... ... 27, 2016 , ... Most consumers engage with biometrics technology ... secure access, voice recognition for hands-free communication, and facial recognition to help organize ... technology today. But if they asked Joey Pritikin, Vice President of Marketing ...
(Date:4/27/2016)... MD (PRWEB) , ... April 27, 2016 , ... ... Greg Lamka, PhD to its Scientific Advisory Board. Dr. Lamka will assist PathSensors ... plant pathogen detection. , PathSensors deploys the CANARY® test platform for the ...
Breaking Biology Technology: