Navigation Links
Lab-on-a-chip homes in on how cancer cells break free
Date:3/18/2009

Johns Hopkins engineers have invented a method that could be used to help figure out how cancer cells break free from neighboring tissue, an "escape" that can spread the disease to other parts of the body. The new lab-on-a-chip, described in the March issue of the journal Nature Methods, could lead to better cancer therapies.

"Studying cell detachment at the subcellular level is critical to understanding the way cancer cells metastasize," says principal investigator Peter Searson, Reynolds Professor of Materials Science and Engineering. "Development of scientific methods to study cell detachment may guide us to prevent, limit or slow down the deadly spreading of cancer cells."

His team's research focuses on a missing puzzle piece in the common but unfortunate events that can occur in cancer patients. For example, cancer that starts in the breast sometimes spreads to the lungs.

That's because tumor cells detach and travel through the bloodstream to settle in other tissues. Scientists have learned much about how cancer cells attach to these surfaces, but they know little about how these insidious cells detach because no one had created a simple way to study the process.

Searson and two other scientists from Johns Hopkins' Whiting School of Engineering have solved this problem with a lab-on-a-chip device that can help researchers study cell detachment. With this device, they hope to discover exactly how cancer cells spread.

The lab-on-a-chip device consists of an array of gold lines on a glass slide. Molecules promoting the formation of cell attachments are tethered to the gold lines like balloons tied to string. A cell is placed on the chip, atop these molecules. The cell spreads across several of the gold lines, forming attachments to the surface of the chip with help from the molecules.

Then, the tethered molecules are released from one of the lines by a chemical reaction, specifically by "electrochemical reduction," Searson explains. Where these molecules are detached, that portion of the cell loses its grip on the surface of the chip. This segment of the cell pauses for a moment and then contracts forcefully toward its other end, which is still attached to the chip. The researchers were able to film this "tail snap" under a microscope.

"It's very dramatic," says Denis Wirtz, a Johns Hopkins professor of chemical and biomolecular engineering and co-author of the Nature Methods paper. "The cell stretches way, way out across the chip and then, on command, the tail snaps toward the body of the cell."

Cells survive this programmed-release process and can be tested again and again, the researchers said.

Bridget Wildt, a materials science and engineering doctoral student in Searson's lab, used the device to perform and record movies of the live-cell experiments. Wildt tested cells from the connective tissue of mice during these experiments, but the team plans to try other types of cells in the future.

"In the movies, you can see that the cell doesn't move immediately after the chemical reaction is triggered. We refer to this phenomenon as the induction time of the cell," Wildt says. "After this induction time, the cell then snaps back and contracts. We analyze the rate of the cell's contraction and then compare this information to separate cells released under different conditions using chemicals called inhibitors. From these results we are beginning to understand the processes that regulate cell detachment at the molecular level."

The researchers have speculated that the induction time for cancer cells, as compared to noncancerous cells, would be shorter because cancer cells are more pliable. In the near future, Wildt says, they plan to test this hypothesis in experiments with cancer cells. If this assumption proves correct, it may give them a tool to differentiate between cancerous and noncancerous cells.


'/>"/>

Contact: Mary Spiro
prs@jhu.edu
410-516-4802
Johns Hopkins University
Source:Eurekalert  

Related biology news :

1. New holographic method could be used for lab-on-a-chip technologies
2. Fireproofing homes dramatically reduces forest fire size, according to new study
3. Increased allergen levels in homes linked to asthma
4. Newly described contaminant sources in Katrina-flooded homes pose health risks
5. Green tea boosts production of detox enzymes, rendering cancerous chemicals harmless
6. A study by the MUHC and McGill University opens a new door to understanding cancer
7. ESF EURYI award winner aims to stop cancer cells reading their own DNA
8. Protein chatter linked to cancer activation
9. Newly created cancer stem cells could aid breast cancer research
10. Western diet linked to increased risk of colon cancer recurrence
11. Obesity and lack of exercise could enhance the risk of pancreatic cancer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Lab-on-a-chip homes in on how cancer cells break free
(Date:3/23/2016)... WAKEFIELD, Massachusetts , March 23, 2016 ... kombiniert im Interesse erhöhter Sicherheit Gesichts- und ... Xura, Inc. (NASDAQ: MESG ... heute bekannt, dass das Unternehmen mit SpeechPro ... insbesondere aus der Finanzdienstleistungsbranche, wird die Möglichkeit ...
(Date:3/21/2016)... , March 22, 2016 ... with passcodes for superior security   ... leading provider of secure digital communications services, today announced ... technology and offer enterprise customers, particularly those in the ... recognition and voice authentication within a mobile app, alongside, ...
(Date:3/15/2016)... --> --> ... Research "Digital Door Lock Systems Market - Global Industry Analysis, ... global digital door lock systems market in terms of revenue ... forecast to grow at a CAGR of 31.8% during the ... enterprises (MSMEs) across the world and high industrial activity driving ...
Breaking Biology News(10 mins):
(Date:5/23/2016)... WARSAW, Ind. , May 23, 2016 Zimmer ... in musculoskeletal healthcare, today announced that its Board of Directors ... stockholders for the second quarter of 2016. ... on or about July 29, 2016 to stockholders of record ... Future declarations of dividends are subject to approval of the ...
(Date:5/23/2016)... ... 23, 2016 , ... Foresight Institute , a leading ... for the 2015 Foresight Institute Feynman Prizes. , These prestigious prizes, named ... for experiment and the other for theory in nanotechnology. Prof. Markus J. Buehler, ...
(Date:5/20/2016)... ... 20, 2016 , ... Korean researchers say Manumycin A triggers apoptosis, or natural ... to treat the disease. Surviving Mesothelioma has just posted an article on the new ... institutions based their mesothelioma study on the fact the Manumycin A, a derivative of ...
(Date:5/19/2016)... , May 19, 2016 There ... fully recover given the relentless pressures in pricing and ... in the investors circle though - numerous opportunities are ... of today,s session, ActiveWallSt.com,s presents four names in this ... Vitae Pharmaceuticals Inc. (NASDAQ: VTAE ), Anthera ...
Breaking Biology Technology: