Navigation Links
La Jolla Institute scientist discovers key step in immune system-fueled inflammation
Date:7/1/2012

SAN DIEGO (July 1, 2012) Like detectives seeking footprints and other clues on a television "whodunit," science can also benefit from analyzing the tracks of important players in the body's molecular landscape. Klaus Ley, M.D., a scientist at the La Jolla Institute for Allergy & Immunology, has done just that and illuminated a key step in the journey of inflammation-producing immune cells. The finding provides powerful, previously unknown information about critical biological mechanisms underlying heart disease and many other disorders.

The study, published today in Nature, focuses on one of the body's most abundant and important immune cells, known as neutrophils, which play a pivotal role in many diseases. "Neutrophils are the body's first line of defense and the main cell protecting us from bacterial infections," said Dr. Ley, a pioneer in vascular immunology and head of the La Jolla Institute's Division of Inflammation Biology. "While their protective function is very positive, neutrophils also have inflammation-producing properties that cause problems in heart disease and a host of autoimmune diseases, for example lupus. This makes understanding how to manipulate these cells extremely important in disrupting disease."

National Medal of Science winner Shu Chien, M.D., Ph.D., a UC San Diego professor renowned for his work on vascular mechanisms and atherosclerosis, praised Dr. Ley's finding as a significant advance in understanding inflammatory mechanisms in disease. "They have elucidated the molecular and mechanical bases of this type of neutrophil rolling (in the blood vessels) that have major significance in inflammation," said Dr. Chien, director of UCSD's Institute of Engineering in Medicine. "Since inflammation is at the root of a large variety of diseases, these findings not only have fundamental importance in the mechanobiology of the cell, but also in understanding the pathophysiology of many disease states."

In his Nature paper entitled "'Slings' enable neutrophil rolling at high shear," Dr. Ley revealed how neutrophils use sling-like membrane tethers to latch on to the blood vessel wall during periods when blood flow is very fast. In making the discovery, Dr. Ley and Prithu Sundd, Ph.D., a researcher at La Jolla Institute, used "dynamic footprinting," a pioneering imaging technique they developed in 2010 that uses special microscopes and total internal reflection microscopy to see and photograph the neutrophil adhesion process with unprecedented clarity. Alex Groisman, Ph.D., an associate professor in UCSD's Department of Physics, was instrumental in developing and constructing the microfluidic device in which these experiments were conducted and collaborated on the Nature paper.

Sussan Nourshargh, Ph.D., professor of Microvascular Pharmacology and head of the Center for Microvascular Research at Barts and The London Medical School, University of London, said the work provides another "major insight" from Dr. Ley whose discoveries, over the years, have repeatedly enhanced scientific understanding of the role of neutrophils in causing inflammation. In particular, she cited Dr. Ley's groundbreaking work on the discovery of the leukocyte adhesion cascade, which explained the sequential steps used by neutrophils to clamp onto the blood vessel wall as they prepare to migrate to sites of infection. His latest finding reveals another important step in that process.

"This is a completely new cellular concept that will now be added as an additional step to the leukocyte adhesion cascade that describes the sequential cellular responses involved in guiding neutrophils to sites of inflammation," she said. "This pioneering work will without doubt pave the way for other researchers to explore the occurrence of "slings" in a wide range of inflammatory scenarios."

Like other immune cells, neutrophils travel throughout the body via the blood stream pursuing their infection-fighting duties. In order to accomplish their work, neutrophils must migrate through the blood vessel walls to sites of infection, injury or inflammation.

"The activities of neutrophils are very important for our survival, so they are the subject of significant scientific study," said Dr. Ley. While some scientists study their migration out of the blood vessel, Dr. Ley's lab has focused on how neutrophils adhere to the blood vessel wall. "This is important because it provides an opportunity to develop new treatments based on modulating or blocking one of the steps in the adhesion cascade," said Dr. Ley, noting that earlier studies have shown that blocking even one of the steps can severely reduce neutrophil recruitment.

While Dr. Ley has previously shown how neutrophils adhere when blood flow is slow, his latest study reveals that neutrophils use long membrane tethers at the front of the cell, termed "slings," to slow down during high blood flow. The cells do this by separating their cytoskeleton from the cellular membrane, wrapping the sling around themselves like a lasso and then digging their hooks into the blood vessel wall, said Dr. Ley. High blood flow occurs during inflammation, when the body rushes immune cells to a site to promote healing. Inflammation is a normal part of the healing process, but is unwanted in certain diseases.

"For these cells, adhering under high shear is like being in a huge wind storm," said Dr. Ley. "The challenge in this storm is not to get blown away."

Dr. Ley's studies could prove valuable in helping scientists understand how to reduce adhesion, where inflammation is unwanted, such as in heart or autoimmune disease, or to enhance the process, where more neutrophils are desired, such as in bacterial infections like MRSA. "The body needs to have enough neutrophils to fight off bacteria faster than they can grow," he said. "Better understanding of neutrophil adhesion could be very beneficial in that process. Conversely, interrupting this process could have major impacts in autoimmune and other inflammatory diseases."


'/>"/>

Contact: Bonnie Ward
contact@liai.org
619-303-3160
La Jolla Institute for Allergy and Immunology
Source:Eurekalert

Related biology news :

1. La Jolla Institute discovery could lead to new way to screen drugs for adverse reactions
2. Diabetes Research Institute develops oxygen-generating biomaterial
3. Space research institute honors Sen. Hutchison with Pioneer Award
4. Scripps Research Institute scientists find promising vaccine targets on hepatitis C virus
5. Minneapolis Heart Institute selected to participate in Cardiovascular Cell Therapy Research Network
6. Cary Institute Hydrofracking Forum
7. Scripps Research Institute Professor Gerald F. Joyce elected to American Academy of Arts & Sciences
8. Scripps Research Institute scientists develop antidote for cocaine overdose
9. NJIT, Chinas Bengbu Glass Institute sign agreement for R&D, training
10. Merkin Family Foundation to fund next generation of Broad Institute scientists
11. TGen leads new National Institutes of Health study of brain tumors
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/5/2017)... , April 5, 2017 Today HYPR ... that the server component of the HYPR platform is ... providing the end-to-end security architecture that empowers biometric authentication ... HYPR has already secured over 15 million users across ... manufacturers of connected home product suites and physical access ...
(Date:4/4/2017)... NEW YORK , April 4, 2017   ... solutions, today announced that the United States Patent and ... The patent broadly covers the linking of an iris ... the same transaction) and represents the company,s 45 th ... our latest patent is very timely given the multi-modal ...
Breaking Biology News(10 mins):
(Date:4/26/2017)... Pa. , April 26, 2017  Genisphere ... delivery platform, has signed a collaborative and sponsored ... Dr. Silvia Muro . The overall goal ... and pharmacodynamics of various 3DNA designs and formulations ... involve targeting diseases of the vasculature as well ...
(Date:4/25/2017)... CA (PRWEB) , ... April 25, 2017 , ... ... of L3 Healthcare, is pleased to announce the company is now a certified ... The iMedNet software certification enables the company’s clinical research team to build, ...
(Date:4/25/2017)... Gatos, California (PRWEB) , ... April 25, 2017 ... ... business, Analytical Services and Metrology Partners.     , Covalent’s Analytical Services unit ... Most samples can be measured within 24 hours of receipt. There are no ...
(Date:4/24/2017)... 2017  Dante Labs announced today the offer of whole ... $900). While American individuals have been able to access WGS ... access WGS below EUR 1,000. The sequencing includes ... information to make informed decisions about disease monitoring, prevention, nutrition, ... ...
Breaking Biology Technology: