Navigation Links
LSTM researchers among first to sequence snake genome

Researchers from LSTM, along with a team of international biologists who have recently sequenced the genome of the king cobra, say that their work reveals dynamic evolution and adaptation in the snake venom system, which seemingly occurs in response to an evolutionary arms race between venomous snakes and their prey.

A paper co-lead by Dr Nicholas Casewell, a NERC research Fellow at LSTM, and 34 co-authors from six countries, including the Director of the Alistair Reid Venom Unit at LSTM, Dr Robert Harrison, has been published in the Proceedings of the National Academy of Sciences (PNAS). Members of this team also analysed the genome of the Burmese python (Python molurus bivittatus) and used it for comparison with the king cobra (Ophiophagus Hannah). These papers represent the first complete and annotated snake genomes.

Snake venoms are complex protein mixtures encoded by several gene families and these proteins function synergistically to cause rapid paralysis or death in prey. The study provides an insight into the biology of the venom in snakes, and allows the understanding of the evolution of venom genes at the genome structural level. Armed with the both the king cobra and Burmese python genome the team was able to show that, despite previous hypotheses that venom genes evolve "early" in the lineage leading to snakes, venom gene families do not duplicate early, in fact the study shows that the rapid and extensive expansion of functionally important venom toxin families is restricted to the venomous "advanced" snake lineage. The diversification of these toxins correlates directly with their functional importance in prey capture, for example the most pathogenic king cobra toxin family have undergone massive expansion, while, in contrast, venom proteins with less important functions do not participate in the evolutionary arms race occurring between snakes and their prey.

Dr Nicholas Casewell said: "These are the first snake genomes to be sequenced and fully annotated and our results in relation to the king cobra provide a unique view of the origin and evolution of snake venom, including revealing multiple genome-level adaptive responses to natural selection in this complex biological weapon system. These adaptations include the massive and rapid expansion of gene families that produce venom toxins, providing the snake with a highly toxic protein mixture required to overcome a variety of different prey and also circumvent any resistance to venom that may have developed in such prey. Our study provides unique genome-wide perspectives on the adaptive evolution of venom systems as well as protein evolution in general. As such it contributes an essential foundation for understanding and comparing evolutionary genomic processes in venomous organisms."

The work carried out by Dr Casewell and his co-authors was used in the second paper outlining the analysis of the genome of the Burmese python, also published in the same edition of PNAS.


Contact: Clare Bebb
Liverpool School of Tropical Medicine

Related biology news :

1. Researchers unlock a new means of growing intestinal stem cells
2. Colon cancer researchers target stem cells, discover viable new therapeutic path
3. Researchers find a missing component in effort to create primitive, synthetic cells
4. Researchers have a nose for how probiotics could affect hay fever
5. 4 Johns Hopkins researchers named AAAS Fellows
6. Researchers use nanoscale patches to sensitize targeted cell receptors
7. 2 Cleveland Clinic researchers honored for contribution to science
8. Researchers describe 1 mechanism that favors rejection in transplantation of porcine cartilage in humans
9. UCLA, Emory researchers find a chemical signature for fast form of Parkinsons
10. Researchers map brain areas vital to understanding language
11. Researchers gain fuller picture of cell protein reactions
Post Your Comments:
(Date:5/12/2016)... , a brand of Troubadour Research & ... Q1 wave of its quarterly wearables survey. A particular ... a program where they would receive discounts for sharing ... "We were surprised to see that so many ... CEO of Troubadour Research, "primarily because there are segments ...
(Date:4/28/2016)... , April 28, 2016 First quarter 2016: ... up 966% compared with the first quarter of 2015 ... SEK 589.1 M (loss: 18.8) and the operating margin was 40% ... 0.32) Cash flow from operations was SEK 249.9 M ... revenue guidance is unchanged, SEK 7,000-8,500 M. The operating ...
(Date:4/15/2016)... 15, 2016  A new partnership announced today ... underwriting decisions in a fraction of the time ... and high-value life insurance policies to consumers without ... With Force Diagnostics, rapid testing (A1C, Cotinine and ... (blood pressure, weight, pulse, BMI, and activity data) ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... June 24, 2016 Epic Sciences unveiled ... cancers susceptible to PARP inhibitors by targeting homologous ... (CTCs). The new test has already been incorporated ... multiple cancer types. Over 230 clinical ... response pathways, including PARP, ATM, ATR, DNA-PK and ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... Researchers at ... most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the ... read it now. , Diagnostic biomarkers are signposts in the blood, lung fluid ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
(Date:6/23/2016)... 23, 2016 /PRNewswire/ - FACIT has announced the ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or ... of a portfolio of first-in-class WDR5 inhibitors for ... as WDR5 represent an exciting class of therapies, ... medicine for cancer patients. Substantial advances have been ...
Breaking Biology Technology: