Navigation Links
Kidney function discovery sheds light on genetic complexity of disease
Date:11/26/2008

To find a cure for cancer, haemophilia and other diseases, researchers need to be looking for complex, interacting genetic factors, according to the authors of a new study.

A new study, published in the Journal of Clinical Investigation by researchers at the Centenary Institute, Royal Prince Alfred Hospital (RPA) and The Australian National University (ANU), has exposed a greater level of genetic complexity for diseases than was originally thought.

The researchers looked at two disorders of kidney function - iminoglycinuria and hyperglycinuria. These disorders, first described 50 years ago, are conditions where large amounts of individual amino acids (the building blocks of proteins in our body) are wasted by the kidney.

Professor John Rasko, Head, Gene and Stem Cell Therapy program at Centenary Institute and Cell and Molecular Therapies at RPA, says although up to one in every thousand babies has this disorder at birth, it usually resolves in the first year of life. For those individuals in whom it continues to occur, it is generally thought not to cause medical problems but previous cases have been linked to high blood pressure, kidney stones, deafness and problems in the brain.

"Iminoglycinuria was observed to occur in families and the pattern of inheritance suggested that the cause might be due to an inherited abnormality of a specific pump on the surface of kidney cells," Professor Rasko explains.

The teams from Centenary Institute, RPA and ANU have now unravelled the genetic explanation by showing that not one, but up to four different pumps present in the kidney determine whether or not this particular abnormality occurs.

"The study demonstrates that in some cases mutations occur only in one gene, while in other cases mutations in two or even three different genes are observed, and that the disorders can arise due to mutations in a group of genes carrying out related functions," says Professor Stefan Broer, School of Biochemistry and Molecular Biology at ANU.

"From the point of view of understanding complex diseases in humans, it suggests we need to integrate much greater levels of complex genetic information to reach a clear understanding."

Professor Rasko says that these findings provide a foundation to improve our understanding of common human diseases, and greater potential to develop effective gene therapies to reduce the impact of diseases on patients.

"Gene therapies, whereby cells can be modified and then re-introduced into the body without the genetic mutations that cause illness, provide enormous potential to help cure diseases including haemophilia, cancer and cardiovascular disease," Professor Rasko explains.

"A crucial ingredient of successfully developing gene therapies is a thorough understanding of all the genetic factors at play in disease. This discovery takes us one step closer to understanding the complex factors at work in these serious diseases."


'/>"/>

Contact: Erin Sharp
e.sharp@centenary.org.au
029-565-6118
Research Australia
Source:Eurekalert

Related biology news :

1. Diet support helps chronic kidney patients
2. Genetic breakthrough offers promise in tackling kidney tumors
3. Northwestern Memorial trial may wean kidney transplant patients off antirejection drugs
4. Simple screening questionnaire for kidney disease outperforms current clinical practice guidelines
5. Gaining a better understanding of kidney diseases
6. High blood pressure takes big toll on small filtering units of the kidney
7. Scientists identify cell changes leading to impaired artificial kidney function
8. Geron Demonstrates hESC-derived cardiomyocytes improve heart function after myocardial infarction
9. Device helps patients survive, regain function til transplant
10. Specific brain protein required for nerve cell connections to form and function
11. Systems Biology poised to revolutionize the understanding of cell function and disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/3/2017)... 2017  Data captured by IsoCode, IsoPlexis ... a statistically significant association between the potency ... and objective response of cancer patients post-treatment. ... whether cancer patients will respond to CAR-T ... as to improve both pre-infusion potency testing and ...
(Date:3/30/2017)... March 30, 2017 Trends, opportunities and forecast ... behavioral), by technology (fingerprint, AFIS, iris recognition, facial recognition, ... others), by end use industry (government and law enforcement, ... and banking, and others), and by region ( ... Asia Pacific , and the Rest ...
(Date:3/27/2017)... N.Y. , March 27, 2017  Catholic ... Information and Management Systems Society (HIMSS) Analytics for ... EMR Adoption Model sm . In addition, CHS ... of U.S. hospitals using an electronic medical record ... for its high level of EMR usage in ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give it ... Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles (CHLA). ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO ... Diego Rotary Club. The event entitled “Stem Cells and Their Regenerative ... attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. ...
(Date:10/10/2017)... SomaGenics announced the receipt of a Phase ... (Single Cell), expected to be the first commercially available ... from single cells using NGS methods. The NIH,s recent ... development of approaches to analyze the heterogeneity of cell ... for measuring levels of mRNAs in individual cells have ...
Breaking Biology Technology: