Navigation Links
Key metabolic pathway implicated in intractable form of breast cancer
Date:7/18/2011

FINDINGS: Using a new in vivo screening system, Whitehead Institute researchers have identified a protein in a key metabolic pathway that is essential in estrogen receptor (ER)-negative breast cancer. When the expression of the gene that codes for this proteinphosphoglycerate dehydrogenase or PHGDHis suppressed in tumors and cell lines with an overabundance of the protein, the rate of cellular growth declines markedly.

RELEVANCE: PHGDH is overexpressed in approximately 70% of ER-negative breast cancer patients. Patients with ER-negative disease respond poorly to treatment and have a low five-year survival rate. In cells and tumors where it is overexpressed, PHGDH may represent a promising target for drug development.

CAMBRIDGE, Mass. (July 18, 2011) Using a new in vivo screening system, Whitehead Institute researchers have identified a protein in the serine biosynthesis pathway that is essential in estrogen receptor (ER)-negative breast cancera notoriously difficult disease to treat associated with low five-year survival rates.

According to the researchers, when expression of the gene that codes for this proteinphosphoglycerate dehydrogenase or PHGDHis suppressed in tumors and cell lines with an overabundance of the protein, the rate of cellular growth declines markedly.

As reported this month in Nature, the in vivo screen focused on 133 metabolic genes that the researchers predicted to be necessary for tumorigenesis. Using RNA interference (RNAi), first author Richard Possemato targeted these genes in human breast cancer cells implanted in mice.

"Our goal for this study was to look for essential cancer genes in vivo, where the levels of metabolites are likely more appropriate than in an in vitro model system," says Possemato, a postdoctoral researcher in the lab of Whitehead Member David Sabatini.

In vivo screening provides a more realistic understanding of what would work in a living organism rather than in a Petri dish's artificial environment. During the screen Possemato and colleagues identified PHGDH, which is overexpressed in approximately 70% of ER-negative breast cancer patients, as essential to tumor growth. The PHGDH protein is one of three enzymes involved in the metabolic serine biosynthesis pathway. Cancer cells alter their metabolism in the interest of sustaining rapid growth, and high levels of PHGDH appear to drive such metabolic change. When Possemato suppressed PHGDH protein production in breast cancer cell lines with elevated levels of it, the cells stopped proliferating.

The findings suggest that PHGDH may represent a promising target for drug development for ER-negative breast cancer.

"We do think this has some therapeutic relevance, where an inhibitors of this enzyme would have effects on the cells we identified that tend to overexpress this enzyme," says Sabatini, who is also a biology professor at MIT. "By RNAi, we've provided proof of principle, but whether a drug against this protein would be valuable remains to be determined."


'/>"/>

Contact: Nicole Giese
giese@wi.mit.edu
617-258-6851
Whitehead Institute for Biomedical Research
Source:Eurekalert

Related biology news :

1. Hold your breath: Air pollution plays role in cardiac, metabolic diseases
2. Study shows pine bark naturally improves kidney function in patients with metabolic syndrome
3. Metabolic cost of human sleep deprivation quantified by University of Colorado team
4. Birch bark ingredient comes with many metabolic benefits
5. Seaweed as biofuel? Metabolic engineering makes it a viable option
6. Longevity breakthrough: The metabolic state of mitochondria controls life span
7. Study finds low vitamin-d levels in northern California residents with metabolic syndrome
8. AgriLife scientist: Functional amino acids regulate key metabolic pathways
9. Imaging reveals key metabolic factors of cannibalistic bacteria
10. Native-like spider silk produced in metabolically engineered bacterium
11. Researchers discover metabolic vulnerability in TB and potential drug target
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/21/2016)... , June 21, 2016 NuData ... the new role of principal product architect and ... the director of customer development. Both will report ... technical officer. The moves reflect NuData,s strategic growth ... response to high customer demand and customer focus ...
(Date:6/15/2016)... June 15, 2016 Transparency ... titled "Gesture Recognition Market by Application Market - Global Industry Analysis ... 2024". According to the report, the  global gesture recognition ... 2015 and is estimated to grow at a ... by 2024.  Increasing application of gesture ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... 2016   Boston Biomedical , an industry ... to target cancer stemness pathways, announced that its ... Drug Designation from the U.S. Food and Drug ... including gastroesophageal junction (GEJ) cancer. Napabucasin is an ... cancer stemness pathways by targeting STAT3, and is ...
(Date:6/23/2016)... 2016 Houston Methodist Willowbrook Hospital has ... Association to serve as their official health care ... Willowbrook will provide sponsorship support, athletic training services, ... coaches, volunteers, athletes and families. "We ... Association and to bring Houston Methodist quality services ...
(Date:6/23/2016)... , June, 23, 2016  The Biodesign Challenge (BDC), ... new ways to harness living systems and biotechnology, announced ... (MoMA) in New York City . ... participating students, showcased projects at MoMA,s Celeste Bartos Theater ... Antonelli , MoMA,s senior curator of architecture and design, ...
(Date:6/23/2016)... ... 2016 , ... STACS DNA Inc., the sample tracking software company, today announced ... has joined STACS DNA as a Field Application Specialist. , “I am thrilled ... COO of STACS DNA. “In further expanding our capacity as a scientific integrator, Hays ...
Breaking Biology Technology: