Navigation Links
Key metabolic pathway implicated in intractable form of breast cancer
Date:7/18/2011

FINDINGS: Using a new in vivo screening system, Whitehead Institute researchers have identified a protein in a key metabolic pathway that is essential in estrogen receptor (ER)-negative breast cancer. When the expression of the gene that codes for this proteinphosphoglycerate dehydrogenase or PHGDHis suppressed in tumors and cell lines with an overabundance of the protein, the rate of cellular growth declines markedly.

RELEVANCE: PHGDH is overexpressed in approximately 70% of ER-negative breast cancer patients. Patients with ER-negative disease respond poorly to treatment and have a low five-year survival rate. In cells and tumors where it is overexpressed, PHGDH may represent a promising target for drug development.

CAMBRIDGE, Mass. (July 18, 2011) Using a new in vivo screening system, Whitehead Institute researchers have identified a protein in the serine biosynthesis pathway that is essential in estrogen receptor (ER)-negative breast cancera notoriously difficult disease to treat associated with low five-year survival rates.

According to the researchers, when expression of the gene that codes for this proteinphosphoglycerate dehydrogenase or PHGDHis suppressed in tumors and cell lines with an overabundance of the protein, the rate of cellular growth declines markedly.

As reported this month in Nature, the in vivo screen focused on 133 metabolic genes that the researchers predicted to be necessary for tumorigenesis. Using RNA interference (RNAi), first author Richard Possemato targeted these genes in human breast cancer cells implanted in mice.

"Our goal for this study was to look for essential cancer genes in vivo, where the levels of metabolites are likely more appropriate than in an in vitro model system," says Possemato, a postdoctoral researcher in the lab of Whitehead Member David Sabatini.

In vivo screening provides a more realistic understanding of what would work in a living organism rather than in a Petri dish's artificial environment. During the screen Possemato and colleagues identified PHGDH, which is overexpressed in approximately 70% of ER-negative breast cancer patients, as essential to tumor growth. The PHGDH protein is one of three enzymes involved in the metabolic serine biosynthesis pathway. Cancer cells alter their metabolism in the interest of sustaining rapid growth, and high levels of PHGDH appear to drive such metabolic change. When Possemato suppressed PHGDH protein production in breast cancer cell lines with elevated levels of it, the cells stopped proliferating.

The findings suggest that PHGDH may represent a promising target for drug development for ER-negative breast cancer.

"We do think this has some therapeutic relevance, where an inhibitors of this enzyme would have effects on the cells we identified that tend to overexpress this enzyme," says Sabatini, who is also a biology professor at MIT. "By RNAi, we've provided proof of principle, but whether a drug against this protein would be valuable remains to be determined."


'/>"/>

Contact: Nicole Giese
giese@wi.mit.edu
617-258-6851
Whitehead Institute for Biomedical Research
Source:Eurekalert

Related biology news :

1. Hold your breath: Air pollution plays role in cardiac, metabolic diseases
2. Study shows pine bark naturally improves kidney function in patients with metabolic syndrome
3. Metabolic cost of human sleep deprivation quantified by University of Colorado team
4. Birch bark ingredient comes with many metabolic benefits
5. Seaweed as biofuel? Metabolic engineering makes it a viable option
6. Longevity breakthrough: The metabolic state of mitochondria controls life span
7. Study finds low vitamin-d levels in northern California residents with metabolic syndrome
8. AgriLife scientist: Functional amino acids regulate key metabolic pathways
9. Imaging reveals key metabolic factors of cannibalistic bacteria
10. Native-like spider silk produced in metabolically engineered bacterium
11. Researchers discover metabolic vulnerability in TB and potential drug target
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/21/2017)... LONDON , February 21, 2017 ... um 70 Millionen US-Dollar wachsen. Nach einem Gespräch mit mehr ... es einige Hindernisse zu überwinden gilt, um diese Prognose ... ... unter anderem die Mobilisierung der finanziellen Mittel für die ...
(Date:2/14/2017)... -- Wake Forest Baptist Medical Center today announced Julie Ann Freischlag, ... (CEO). Freischlag joins the medical center on May 1 ... who last year announced that he would transition to ... it since 2008.   As CEO, Freischlag ... academic health system, which includes Wake Forest School of ...
(Date:2/13/2017)... -- Former 9/11 Commission border counsel and Special Counsel ... of Identity Strategy Partners, LLP, today releases the ... Order: Protecting the Nation From Foreign Terrorist Entry Into ... President Trump,s ,Travel Ban, Executive Order gains more notoriety ... travel ban, it is important that our national discourse ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... 28, 2017 Summary This report ... Biochem and its partnering interests and activities since 2010. ... an in-depth insight into the partnering activity of one of ... company reports are prepared upon purchase to ensure inclusion of ... The report will be delivered in PDF format within ...
(Date:3/28/2017)... March 28, 2017  The National Pharmaceutical Council (NPC) ... health policy research organization as its newest member. ... Affairs ( North America ), will serve ... "We,re pleased to have Ipsen and Dr. ... Dan Leonard . "We welcome their insights in helping ...
(Date:3/28/2017)... -- Biostage, Inc. (Nasdaq: BSTG), ("Biostage" or ... to treat cancers and other life-threatening conditions of the ... McGorry, CEO of Biostage, will present on the ... MassBio 2017 Annual Meeting on Thursday, March ... The 3D Printing and BioEngineering panel will ...
(Date:3/28/2017)... Focus is on the ... to the scientifically intensive operations of companies in ... and industrial. In today,s pre-market research, Stock-Callers.com dedicates attention ... PTLA), OvaScience Inc. (NASDAQ: OVAS), Ocera Therapeutics Inc. ... OCUL ). Learn more about these stocks ...
Breaking Biology Technology: