Navigation Links
Key difference in how TB bacteria degrade doomed proteins
Date:10/17/2010

UPTON, NY Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Stony Brook University have discovered a key difference in the way human cells and Mycobacterium tuberculosis bacteria, which cause TB, deliver unwanted proteins marked with a "kiss of death" sequence to their respective cellular recycling factories. This critical difference, described in a paper published online October 17, 2010, in the journal Nature Structural and Molecular Biology, may help scientists design drugs to disable the bacterial system while leaving normal human protein recycling centers intact.

"With tuberculosis infecting a third of the world's population, primarily in developing countries, there is great need for new, effective TB treatments," said study co-author Huilin Li, a Brookhaven biophysicist and associate professor at SBU. "Our research seeks to understand the protein-recycling mechanism of TB bacteria, because it is one of the microbe's keys to survival in human cells.* Targeting this system with small-molecule-based drugs could inhibit the bacteria and effectively treat TB."

The catch is that human cells have a similar protein-recycling system, essential for their survival, which could also be destroyed by inhibitory drugs. "It's important to find differences between the species so we can target features unique to the bacterial system," Li said.

Li has previously looked at differences in the cellular structure known as a proteasome that chops up the unwanted proteins [see links below]. The current study examined the way proteins destined for degradation are recognized by the bacterial proteasome before entering that structure.

Using beams of high-intensity x-rays at the Lab's ["http://www.nsls.bnl.gov/">National Synchrotron Light Source (NSLS), the scientists determined atomic-level structures of the portion of the bacterial proteasome that identifies the unwanted protein's "kiss of death" marker sequence as well as structures of the marker sequence as it binds with the proteasome.

Based on the structures, the scientists describe a detailed mechanism by which coiled, tentacle-like arms protruding from the proteasome identify the death sentence label, causing a series of protein-folding maneuvers that pull the doomed protein into the degradation chamber.

Importantly, this interaction between the bacterial proteasome and the marker sequence is unique to bacteria. Human cells use a different marker protein and a completely different mechanism for drawing doomed proteins into the proteasome. Thus the details of proteasome-substrate interaction revealed by the current study may provide highly specific targets for the development of new anti-tuberculosis therapies.


'/>"/>

Contact: Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350
DOE/Brookhaven National Laboratory
Source:Eurekalert

Related biology news :

1. Researchers note differences between people and animals on calorie restriction
2. Study sheds light on genetic differences that cause a childhood eye disease
3. Study identifies genetic variants giving rise to differences in metabolism
4. Genetic differences between yeasts greater than those between humans and chimpanzees
5. Red wine vs. white? It makes no difference when it comes to breast-cancer risk
6. Differences in neighborhood food environment may contribute to disparities in obesity
7. The host makes all the difference
8. Difference in fat storage may explain lower rate of liver disease in African-Americans
9. Gene linked to lupus might explain gender difference in disease risk
10. Differences among exercisers and nonexercisers during pregnancy
11. Differences among exercisers and nonexercisers during pregnancy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/12/2017)... 12, 2017  Trovagene, Inc. (NASDAQ: TROV ... today announced that it has signed agreements with seven ... the Middle East for commercialization ... the first wave of international distribution agreements for Trovagene,s ... samples. The initial partners will introduce Trovagene,s ...
(Date:1/11/2017)... 2017 Intoxalock, a leading ignition interlock provider, ... its patent-pending calibration device. With this new technology, Intoxalock ... upload data logs and process repairs at service center ... "Fighting drunk driving through the application of cutting-edge technologies ... but also for the customer who can get back ...
(Date:1/6/2017)... , Jan. 5, 2017  SomaLogic announced today ... Life Alliance" established by iCarbonX, the ... build a "Global Digital Health Ecosystem that can ... combination of individual,s biological, behavioral and psychological data, ... between the companies, SomaLogic will provide proteomics data ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... ... 12, 2017 , ... Huffman Engineering, Inc. , a leader in control ... the company’s Lincoln office as a chemical engineer. In his new role, Beck ... in the life science manufacturing and water/wastewater industries. , Prior to joining Huffman Engineering, ...
(Date:1/12/2017)... The Energy and Resources Institute ... producing mycorrhizae. The Centre for Mycorrhizal Research at TERI ... and developed a technology that eventually produces mycorrhizae based ... ... The TERI facility has a production capacity of over ...
(Date:1/12/2017)... and Pune, India , January 12, 2017 ... Toxicity Testing Market by Type and End Users - Global Opportunity Analysis and Industry ... million by 2022 from $2,921 million in 2015, growing at a CAGR of 15.07% ... ... Allied Market Research Logo ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... Limfinity® Cloud, RURO has enhanced the platform to accommodate increasingly complex and ... rapid data searching, and more. In addition to these improvements, the latest ...
Breaking Biology Technology: