Navigation Links
Keeping stem cells strong
Date:5/21/2013

When infections occur in the body, stem cells in the blood often jump into action by multiplying and differentiating into mature immune cells that can fight off illness. But repeated infections and inflammation can deplete these cell populations, potentially leading to the development of serious blood conditions such as cancer. Now, a team of researchers led by biologists at the California Institute of Technology (Caltech) has found that, in mouse models, the molecule microRNA-146a (miR-146a) acts as a critical regulator and protector of blood-forming stem cells (called hematopoietic stem cells, or HSCs) during chronic inflammation, suggesting that a deficiency of miR-146a may be one important cause of blood cancers and bone marrow failure.

The team came to this conclusion by developing a mouse model that lacks miR-146a. RNA is a polymer structured like DNA, the chemical that makes up our genes. MicroRNAs, as the name implies, are a class of very short RNAs that can interfere with or regulate the activities of particular genes. When subjected to a state of chronic inflammation, mice lacking miR-146a showed a decline in the overall number and quality of their HSCs; normal mice producing the molecule, in contrast, were better able to maintain their levels of HSCs despite long-term inflammation. The researchers' findings are outlined in the May 21 issue of the new journal eLIFE.

"This mouse with genetic deletion of miR-146a is a wonderful model with which to understand chronic-inflammation-driven tumor formation and hematopoietic stem cell biology during chronic inflammation," says Jimmy Zhao, the lead author of the study and a MD/PhD student in the Caltech laboratory of David Baltimore, the Robert Andrews Millikan Professor of Biology. "It was surprising that a single microRNA plays such a crucial role. Deleting it produced a profound and dramatic pathology, which clearly highlights the critical and indispensable function of miR-146a in guarding the quality and longevity of HSCs."

The study findings provide, for the first time, a detailed molecular connection between chronic inflammation, and bone marrow failure and diseases of the blood. These findings could lead to the discovery and development of anti-inflammatory molecules that could be used as therapeutics for blood diseases. In fact, the researchers believe that miR-146a itself may ultimately become a very effective anti-inflammatory molecule, once RNA molecules or mimetics can be delivered more efficiently to the cells of interest.

The new mouse model, Zhao says, also mimics important aspects of human myelodysplastic syndrome (MDS)a form of pre-leukemia that often causes severe anemia, can require frequent blood transfusions, and usually leads to acute myeloid leukemia. Further study of the model could lead to a better understanding of the condition and therefore potential new treatments for MDS.

"This study speaks to the importance of keeping chronic inflammation in check and provides a good rationale for broad use of safer and more effective anti-inflammatory molecules," says Baltimore, who is a coauthor of the study. "If we can understand what cell types and proteins are critically important in chronic-inflammation-driven tumor formation and stem cell exhaustion, we can potentially design better and safer drugs to intervene."


'/>"/>

Contact: Deborah Williams-Hedges
debwms@caltech.edu
626-395-3227
California Institute of Technology
Source:Eurekalert

Related biology news :

1. Keeping ship hulls free of marine organisms
2. Keeping electric vehicle batteries cool
3. University of Miami-led study finds winds played important role in keeping oil away from S. Fla.
4. Housekeeping mechanism for brain stem cells discovered
5. Marine Protected Areas are keeping turtles safe
6. MU researchers develop radioactive nanoparticles that target cancer cells
7. Insight into the dazzling impact of insulin in cells
8. The compound in the Mediterranean diet that makes cancer cells mortal
9. SUMO wrestling cells reveal new protective mechanism target for stroke
10. Herpes infections: Natural killer cells activate hematopoiesis
11. Cells must use their brakes moderately for effective speed control
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:10/26/2019)... Calif. (PRWEB) , ... October ... ... announced significant workflow advances to the ImageXpress® Pico Automated Cell Imaging System ... scoring. , The Digital Confocal option allows scientists to decrease ...
(Date:10/26/2019)... ... October 23, 2019 , ... Nanovis today announced that it ... FDA requirements for nanotechnology. , “We are delighted to receive such an ... role in achieving Nanovis’ goal to reduce the pain and suffering from implant ...
(Date:10/26/2019)... ... October 24, 2019 , ... ... manufacturing solutions for drugs, biologics, gene therapies, and consumer health products, today ... at the forthcoming American Association of Pharmaceutical Scientists (AAPS) PharmSci 360 at ...
Breaking Biology News(10 mins):
(Date:11/2/2019)... ... October 31, 2019 , ... Join Patrick Raber, ... live webinar on Friday, November 15, 2019 at 1pm EST to ... science of profiling T-cell receptors (TCRs) and B-cell receptors (BCRs), has been widely ...
(Date:10/29/2019)... Conn. (PRWEB) , ... October 28, 2019 , ... ... Advisory Board: , , Professor Jack R Wands, MD, of ... and Wyeth (Pfizer) , Professor Gil Mor, MD, PhD, of Wayne State ...
(Date:10/22/2019)... , ... October 22, 2019 , ... nQ Medical, Inc. ... School’s 2019 Most Fundable Companies List which was announced at a showcase event yesterday ... million in annual revenue, strong business plans, and impressive near-term growth projections to be ...
(Date:10/17/2019)... PARK, Kan. (PRWEB) , ... October 15, 2019 ... ... to 23andMe, a leader among services that offer DNA Testing for health and/or ... so popular. Everywhere you look, it seems that people want to know more ...
Breaking Biology Technology: