Navigation Links
KAIST made great improvements of nanogenerator power efficiency

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body.

Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators.

However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO).

Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2 cm x 2 cm).

"We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights," Keon Jae Lee explained.

The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency.

Lee further commented,

"Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources."

The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator.


Contact: Lan Yoon
The Korea Advanced Institute of Science and Technology (KAIST)

Related biology news :

1. KAIST and Saudi Aramco agreed to establish a joint CO2 research center in Korea
2. Launched the Saudi Aramco-KAIST CO2 Management Center in Korea
3. KAIST developed the biotemplated design of piezoelectric energy harvesting device
4. KAIST participates in the 2014 Davos Forum on Jan. 22-25 in Switzerland
5. Nearby chimpanzee populations show much greater genetic diversity than distant human populations
6. WHOI researchers, collaborators receive $1.4 million grant to study life in oceans greatest depths
7. Is rainfall a greater threat to Chinas agriculture than warming?
8. Research4Life greatly expands peer-reviewed research available to developing world
9. Mercury rising: Greater L.A. to heat up an average 4 to 5 degrees by mid-century
10. Smallest and largest fetuses at greater risk of being stillborn, research finds
11. Newly discovered dinosaur implies greater prevalence of feathers
Post Your Comments:
Related Image:
KAIST made great improvements of nanogenerator power efficiency
(Date:11/17/2015)... 17, 2015  Vigilant Solutions announces today that Mr. ... of Directors. --> --> ... from the partnership at TPG Capital, one of the ... $140 Billion in revenue.  He founded and led TPG,s ... TPG companies, from 1997 to 2013.  In his first ...
(Date:11/16/2015)... SAN JOSE, Calif. , Nov 16, 2015 ... leading developer of human interface solutions, today announced ... new Synaptics TouchView ™ touch controller and ... the architectural revolution of smartphones. These new TDDI ... and include TD4100 (HD resolution), TD4302 (WQHD resolution), ...
(Date:11/12/2015)... Nov. 12, 2015  Arxspan has entered into ... and Harvard for use of its ArxLab cloud-based ... tools. The partnership will support the institute,s efforts ... chemical research information internally and with external collaborators. ... for managing the Institute,s electronic laboratory notebook, compound ...
Breaking Biology News(10 mins):
(Date:11/27/2015)... Nov. 27, 2015 /PRNewswire/--  Mallinckrodt plc (NYSE: ... that it has closed the sale of its global ... (GBT- NYSE Euronext) in a transaction valued at approximately ... facilities and a total of approximately 1,000 employees spread ... St. Louis area. This entire workforce ...
(Date:11/26/2015)... 2015 ... Research Laboratories, a leading independent and ... has formed a strategic partnership with ... Health for joint work on clinical ... ) , --> ,     ...
(Date:11/25/2015)... 25, 2015  PharmAthene, Inc. (NYSE MKT: PIP) announced ... stockholder rights plan (Rights Plan) in an effort to ... (NOLs) under Section 382 of the Internal Revenue Code ... PharmAthene,s use of its NOLs could be substantially limited ... in Section 382 of the Code. In general, an ...
(Date:11/25/2015)... and HOLLISTON, Mass. , Nov. ... (Nasdaq: HART ), a biotechnology company developing bioengineered ... Jim McGorry will present at the LD ... 2015 at 2:30 p.m. PT. The presentation will be ... 30 days. Management will also be available at the ...
Breaking Biology Technology: