Navigation Links
KAIST made great improvements of nanogenerator power efficiency
Date:5/15/2014

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body.

Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators.

However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO).

Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2 cm x 2 cm).

"We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights," Keon Jae Lee explained.

The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency.

Lee further commented,

"Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources."

The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator.


'/>"/>

Contact: Lan Yoon
hlyoon@kaist.ac.kr
82-423-502-294
The Korea Advanced Institute of Science and Technology (KAIST)
Source:Eurekalert  

Related biology news :

1. KAIST and Saudi Aramco agreed to establish a joint CO2 research center in Korea
2. Launched the Saudi Aramco-KAIST CO2 Management Center in Korea
3. KAIST developed the biotemplated design of piezoelectric energy harvesting device
4. KAIST participates in the 2014 Davos Forum on Jan. 22-25 in Switzerland
5. Nearby chimpanzee populations show much greater genetic diversity than distant human populations
6. WHOI researchers, collaborators receive $1.4 million grant to study life in oceans greatest depths
7. Is rainfall a greater threat to Chinas agriculture than warming?
8. Research4Life greatly expands peer-reviewed research available to developing world
9. Mercury rising: Greater L.A. to heat up an average 4 to 5 degrees by mid-century
10. Smallest and largest fetuses at greater risk of being stillborn, research finds
11. Newly discovered dinosaur implies greater prevalence of feathers
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
KAIST made great improvements of nanogenerator power efficiency
(Date:3/6/2017)... SAN MATEO, Calif. , March 6, 2017 ... predictive marketing and sales technology, today announced Predictive ... (AI) solution for infusing actionable sales intelligence into ... customers to automatically enable their sales organizations with ... contextual messages that allow for intelligent engagement. Predictive ...
(Date:3/2/2017)... -- Australian stem cell and regenerative medicine company, ... agreement with the Monash Lung Biology Network, a consortia ... Department of Pharmacology at Monash University, Melbourne ... support the use of Cymerus™ mesenchymal stem cells (MSCs) ... is a chronic, long term lung condition recognised by ...
(Date:2/28/2017)... 27. Februar 2017  EyeLock LLC, ein marktführendes Unternehmen ... erstklassige biometrische Lösung zur Iris-Erkennung auf der ... LTE auf dem Mobile World Congress 2017 ... in Halle 3, Stand 3E10, vorstellen. ... Qualcomm Haven™ – eine Kombination aus Hardware, ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... ... 22, 2017 , ... Researchers face a fundamental challenge as ... full-size tissues, bones, even whole organs to implant in people to treat disease ... into the developing tissue. , Current bioengineering techniques, including 3-D printing, can’t ...
(Date:3/22/2017)... CAMBRIDGE, Mass. , March 22, 2017 ... announced that it has eclipsed the 130 million covered ... Cross Blue Shield of Texas . ... stages, the Company continues to enjoy strong payor acceptance ... of its clinical programs and genetic counseling, its industry-leading ...
(Date:3/22/2017)... 22, 2017 The global chronic ... research report by Transparency Market Research (TMR). The top ... and AbbVie Inc., accounted for a share of only ... in this market are focusing aggressively on mergers, acquisitions, ... is likely to lead to market consolidation in the ...
(Date:3/22/2017)... Mass. , March 22, 2017   Boston ... next-generation cancer therapeutics designed to target cancer stemness pathways, ... Patricia S. Andrews as Chief Executive Officer, effective ... succeed Chiang J. Li , M.D., FACP, who ... ten years ago. Under his leadership, Boston Biomedical has ...
Breaking Biology Technology: