Navigation Links
Juvenile diarrhea virus analyzed
Date:7/18/2011

HOUSTON -- (July 18, 2011) -- Rice University scientists have defined the structure -- down to the atomic level -- of a virus that causes juvenile diarrhea. The research may help direct efforts to develop medications that block the virus before it becomes infectious.

The new paper by Professor Yizhi Jane Tao, postdoctoral researcher Jinhui Dong and their colleagues was published in today's online edition of the Proceedings of the National Academy of Sciences.

Tao's Rice lab specializes in gleaning fine details of viral structures through X-ray crystallography and computer analysis of the complex molecules, ultimately pinpointing the location of every atom. That helps researchers see microscopic features on a virus, like the spot that allows it to bind to a cell or sites that are recognized by neutralization antibodies.

Among four small RNA viruses that typically infect people and animals, Tao said, astrovirus was the only one whose atomic structure was not yet known. First visualized through electron microscopy in 1975, it became clear in subsequent studies that the virus played a role in juvenile -- and sometimes adult -- outbreaks of diarrhea, as the second leading cause after rotavirus. Passed orally, most often through fecal matter, the illness is more inconvenient than dangerous, but if left untreated, children can become dehydrated.

The virus works its foul magic in humans' lower intestines, but to get there it has to run a gauntlet through the digestive tract and avoid proteases, part of the human immune system whose job is to destroy it. (Though one, trypsin, actually plays a role in activating astrovirus, she said.) When the astrovirus finds a target and viral RNA is let loose inside human cells, virus replication starts. If the host's immune system does not do a good enough job in removing the viruses, the malady will run its uncomfortable course in a couple of days.

Astrovirus bears a strong resemblance to the virus that causes hepatitis E (HEV). Tao, an associate professor of biochemistry and cell biology, said she decided to investigate astrovirus after completing a similar study of HEV two years ago. "I was thinking there's some connection between those viruses," she said. "Based on that assumption, we started to make constructs to see if we could produce, to start with, the surface spike on the viral capsid."

The capsid is a hard shell 33 nanometers wide that contains and protects its RNA. It has 30 even tinier spikes projecting from the surface, and each of those spikes may have a receptor-binding site.

Once the atomic structure of the spike was known, finding the receptor site took detective work that involved comparing genomic sequences of eight variants of astrovirus to find which were the best conserved. "Among those eight serotypes, we figured there must be a common receptor, and that should be conserved on the surface," said Dong, the paper's lead author.

In looking for the common receptor, the team found a shallow pocket in the spike that became a prime suspect for receptor binding.

The researchers also discovered the astrovirus may have a sweet tooth. "The size of the pockets suggests that it would most likely bind to sugar molecules, like disaccharides or trisaccharides," Tao said. "It may be that the virus binds to the sugar molecule and that helps it bind to the surface of a target cell."

Finally, the team also determined astrovirus resembles another of the four types of RNA-based viruses, calicivirus, although more remotely than HEV. They suspect astrovirus may be a hybrid, with parts derived from both HEV and calicivirus. "Clearly, these three are related somehow. It's an interesting point, but we can't determine that relationship based on what we know right now."

What researchers can do is begin to develop a vaccine or antiviral drug that will block astrovirus. "There's already a phase II vaccine (in trials) for HEV, so that gives us hope," Dong said.

"We will certainly work with other labs to identify compounds that can bind to this potential pocket," Tao said. "We can do this computationally. We can screen 50,000 compounds, for example, to see which may bind to the protein with high affinity. Then we can start the optimization procedure."


'/>"/>

Contact: Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University
Source:Eurekalert  

Related biology news :

1. Bayhill Therapeutics and the Juvenile Diabetes Research Foundation announce research collaboration
2. Transporting juvenile salmon hinders adult migration
3. New scientific knowledge on juvenile diabetes
4. Gene expression findings a step toward better classification and treatment of juvenile arthritis
5. Juvenile bluefin tunas can dive to depths of more than 1000 meters
6. Mechanisms of juvenile hormone action in insects could help fine tune pesticides
7. Study: Rare deep-sea starfish stuck in juvenile body plan
8. Engineering new weapons in the fight against juvenile diabetes
9. Positive results in Phase 2 trial of treatment of C-difficile-associated diarrhea
10. Policy unveiled to combat diarrheal disease, a killer of Kenyan children
11. Symposium in Vietnam to discuss integrated approach to defeating diarrheal disease
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Juvenile diarrhea virus analyzed 
(Date:3/9/2017)... March 9, 2017 4Dx has publicly released ... Imaging Workshop at the University of Pennsylvania. Founder and ... deliver the latest data to world leaders in lung ... together leaders at the forefront of the industry to ... "The quality of the imaging is ...
(Date:3/2/2017)... YORK , March 2, 2017 Summary ... better understand Perrigo and its partnering interests and activities since ... ... Partnering Deals and Alliance since 2010 report provides an in-depth ... leading life sciences companies. On demand company reports ...
(Date:2/28/2017)... Feb. 28, 2017   Acuant , a leading ... announces significant enhancements to new and core technologies building ... products include mobile and desktop Acuant FRM TM ... - a real time manual review of identity documents ... provides the fastest and most accurate capture software to ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... ... March 28, 2017 , ... Benchworks ... March 22 in Philadelphia. The event was offered by the Chamber of Commerce ... featured breakout groups and interaction with speakers who are leaders in their ...
(Date:3/28/2017)... LONDON , March 28, 2017 ... to better understand Enzo Biochem and its partnering interests and ... since 2010 report provides an in-depth insight into the partnering ... On demand company reports are prepared upon purchase ... and company data. The report will be delivered ...
(Date:3/28/2017)... -- The National Pharmaceutical Council (NPC) today announced that Ipsen ... as its newest member. David Cox , PhD, ... America ), will serve as his company,s representative ... to have Ipsen and Dr. Cox join NPC as ... welcome their insights in helping us identify and address ...
(Date:3/28/2017)... , March 28, 2017 Biostage, ... biotechnology company developing bioengineered organ implants to treat cancers ... trachea, today announced that Jim McGorry, CEO ... and BioEngineering panel at the MassBio 2017 ... 2:30 PM ET in Cambrige, Massachussetts. The 3D ...
Breaking Biology Technology: