Navigation Links
Jump in communication skills led to species explosion in electric fishes

AUDIO: Amplified electric pulses were recorded at Biroudou Creek in southeastern Gabon. Each click represents a single electric-organ discharge, which is about one millisecond long. Several fish can be heard in...

Click here for more information.

Bruce Carlson stands next to a fish tank in his lab, holding a putty colored Radio Shack amplifier connected to two wires whose insulation has been stripped. At the bottom of the tank a nondescript little fish lurks in a sawed-off section of PVC pipe.

Carlson sticks the two bare wires into the tank. Suddenly we hear a rapid-fire pop, pop, pop, pop, pop, pop. The pops, which are surprisingly loud, sound rather like the static on an old-fashioned tube radio tuned between stations.

"When there are many fish in a tank," Carlson says, "it sounds like a frying pan".

Carlson, PhD, assistant professor of biology in Arts & Sciences, is studying the African family of weakly electric fishes called the Mormyridae, or mormyrids.

Each fish in this family has an electric signal distinctive to its species, but also, to its sex, dominance status and even its individual identity.

The shape of the discharge is the fish's "face," says Carlson. "It's how they recognize one another."

The sensory pathway that detects and analyzes the electric discharges in the Mormyridae had been well studied, but only in two or three species, Carlson says, and the family has more than 200. Given its diversity Carlson asked whether changes in electrical communication might have influenced rates of speciation.

Three anatomical advances underlie the ability to send and receive diverse electrical signals: cells able to produce different discharges, a global distribution of the sensors that detect the discharges' shape, and a more complex signal-processing area of the brain to analyze them.

In 2008 the National Science Foundation awarded Carlson a grant to travel to Gabon (where many mormyrid species are found) to study the mormyrid brain, and how brain anatomy maps onto the evolutionary tree of the fishes.

His team found that changes in brain anatomy and the resulting ability to fully exploit electric signal space did indeed lead to rapid speciation, a result published in the April 29 issue of Science.

The electric organ

Each pop is one discharge of an electric organ located at the base of a fish's tail. The organs consist of stacks of disk-like cells called electrocytes, "pretty much like watch batteries in series," says Carlson.

The electrocytes all fire action potentials simultaneously, and so their tiny action potentials sum to produce a discharge that is typically about a few volts.

"These signals don't propagate as electromagnetic waves," Carlson explains. "Instead they exist as an electrostatic field, just like you'd get by sticking a battery in the water.

"That's why these fish are so good at recognizing pulses with different shapes," he says. Waves are distorted during transmission, so that their fine temporal structure is smeared.

"The discharges are not distorted. They get weaker with distance, but their temporal structure stays the same. That's one reason mormyrids evolved to be exquisitely sensitive to small timing differences in electric signals," Carlson explains.

Detecting the pulse

Weakly electric fish have several types of electroreceptors but the ones important for communication are called knollenorgans, from the German word "Knolle," or tuber, because they consist of bulbous cells buried just under the fish's skin.

The knollenorgans respond to a voltage rise, firing a time-locked spike in response to outside positive-going voltage changes.

The knollenorgans on one side of a fish's body respond to the start of a discharge and those on the opposite side respond to the end of a discharge. This lets a fish recognize a species-specific discharge by comparing the intervals between spikes coming from opposite sides of its body.

The spike time comparison occurs within the central nervous system, in a part of the brain called the extero-lateral nucleus, or EL.

Signal processing

When we began our work, the "standard anatomy" for the "mormyrid" brainwhat you'd find if you looked in a textbook-- says Carlson, was a two-part EL, with separate nuclei, or clumps of cells, in the anterior and posterior portions.

"We collected lots of brains in Gabon, and two collaborators, Saad Hasan, a former undergraduate at Washington University, who is now a medical student at Cornell, and Derek Miller, who is an undergraduate at Washington University, did all the histology on the brains.

"In addition to the standard anatomy, we were amazed to see another anatomy, where the EL is substantially smaller and not split into two portions.

"All the fish we looked at either had the large EL that was divided into anterior and posterior halves, or they had the small undifferentiated EL.

Working with collaborator Matthew Arnegard, PhD, a postdoctoral fellow at the Fred Hutchinson Cancer Research Center in Seattle, WA, the scientists mapped the brain anatomy onto a phylogenetic tree (an evolutionary tree based on the similarity of DNA sequences), and they could see that there were two equally parsimonious ways to reconstruct the fishes' evolutionary history.

Either the complex brain was ancestral and the simpler brain evolved twice or the simpler brain was ancestral and the complex brain arose twice. To solve this riddle, they did what evolutionary biologists do, which is look at the "next outgroup member," the closest related fish that's not part of the Mormyridae family.

This fish has an area in the midbrain that is similar to a small, undifferentiated EL. This suggested the EL brain was probably the ancestral brain, and the more complex divided ELa/ELp evolved twice, once within the subfamily Mormyrinae and once within the subfamily Petrocephalinae.

Did fancy anatomy lead to rapid diversification?

If a communication system is to promote species diversity it must have both the capacity to create new signals (flexible stalk morphology) and the ability to distinguish those new signals from other signals (the broad distribution of knollenorgans and the complex brain).

"The only fish that have all three is a group of mormyrids we ended up calling Clade A for simplicity's sake," Carlson says.

To test the importance of these traits on signal divergence we analyzed the discharges of fish collected in two locales: the Ivindo River of Gabon, home to the largest known assemblage of the subfamily Mormyrinae; and Odzala National Park in the Republic of the Congo, home to the largest known assemblage of the subfamily Petrocephalinae.

"Statistical analysis showed us that the rate of signal divergence in Clade A was 10 times higher than among other fish within the Mormyridae," Carlson says. Further analysis by collaborator Luke Harmon, PhD, assistant professor of biology at the University of Idaho, revealed that the number of species in clade A has been increasing three to five times faster than the number of species in other mormyrid lineages.

In other words, the fancier the fishs' communication kit, the more likely it was to come up with new electric discharges and new species that identified one another by those discharges.

Putting it to the test

It all worked out statistically and logically but was it what the fish actually experienced?

"After all," says Carlson, "this sensory world is totally foreign to us. I've worked with these fish a long time, so I can tell a few of the discharges apart by ear. But for the most part I need an oscilloscope to see the differences.

Can the Clade A fish tell the difference between discharges? To test them, Carlson ran behavioral playback experiments on fish caught in Gabon.

"A fish would be going pop, pop, pop and we'd pulse it. Depending on the fish, it would either discharge more rapidly, brrrrrrrrr, or stop discharging altogether.

"But if we repeated the stimulus again and again the fish would stop responding. Once it stopped responding, we hit it with a phase-shifted version of the same pulse. If the fish could tell the difference, the discharge rate or pause duration would increase. If it couldn't tell the difference, there would be no change.

The experiments showed that mormyrid fish in Clade A were able to distinguish among pulses, but other mormyrids (those with the EL brain) were not.

Did the evolution of a fancy signal-processing brain drive speciation in the Mormyridae? "It's always difficult with evolutionary studies to say that any one trait is the cause or the trigger for another," Carlson says. "But in this case we were able to show that the complex signal-processing brain evolved before a burst of speciation, that signal variation was higher among fishes with that brain, and that these fishes could distinguish among subtly different pulses, whereas others could not.

"Together it adds up to a strong case for brain evolution triggering increased diversification."


Contact: Diana Lutz
Washington University in St. Louis

Related biology news :

1. Scientists exploit ash tree pests chemical communication
2. Skywalker ensures optimal communication between neurons
3. Science reporter wins ASM Public Communications Award
4. Communication engages complex brain circuitry and processes
5. Brain cell communication: Why its so fast
6. Metcalf Institute wins NSF grant to help journalism and communication of oil spill research
7. Teaching communication and information literacy skills
8. Wall Street Communications Retained by iPharro Media
9. Wall Street Communications Retained by iPharro Media
10. Researchers demystifying complex cellular communications hubs found in sensory neurons
11. Dolphins use diplomacy in their communication
Post Your Comments:
Related Image:
Jump in communication skills led to species explosion in electric fishes 
(Date:3/18/2016)... 18, 2016 --> ... ICT, Manned & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance ... in the border security market and the continuing migration crisis ... Europe has led visiongain to publish this ... --> defence & security companies in the ...
(Date:3/14/2016)... , Allemagne, March 14, 2016 ... ) - --> - Renvoi : image ... --> --> ... biométriques, fournit de nouveaux lecteurs d,empreintes digitales pour ... de DERMALOG sera utilisé pour produire des cartes ...
(Date:3/9/2016)... This BCC Research report provides an overview ... Sequencing (RNA Seq) market for the years 2015, 2016 ... reagents, data analysis, and services. Use this ... market such as RNA-Sequencing tools and reagents, RNA-Sequencing data ... each segment and forecast their market growth, future trends ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... The American Medical Informatics Association ... the National Coordinator for Health IT (ONC) outlining a measurement approach to interoperability ... available when and where it was needed. The organization of health informatics professionals ...
(Date:5/24/2016)... ... May 24, 2016 , ... ... and traumatic injuries, will be accelerated by research at Worcester Polytechnic Institute (WPI) ... of wound healing and tissue regeneration. , The novel method, developed by WPI ...
(Date:5/23/2016)... ... May 23, 2016 , ... ... Precision Farming in 2017 and Beyond. The paper outlines the key trends that ... ag industry. , “We’ve witnessed a lot of highs and lows as the ...
(Date:5/23/2016)... Alto, CA (PRWEB) , ... May 23, 2016 ... ... and public interest organization focused on molecular nanotechnology, announced the winners for the ... of pioneer physicist Richard Feynman, are given in two categories, one for experiment ...
Breaking Biology Technology: