Navigation Links
Johns Hopkins researchers detect sweet cacophony while listening to cellular cross-talk
Date:10/20/2008

Johns Hopkins scientists were dubious in the early 1980s when they stumbled on small sugar molecules lurking in the centers of cells; not only were they not supposed to be there, but they certainly weren't supposed to be repeatedly attaching to and detaching from proteins, effectively switching them on and off. The conventional wisdom was that the job of turning proteins on and off -- and thus determining their actions -- fell to phosphates, in a common and easy-to-detect chemical step in which phosphates fasten to and unfasten from proteins; a process called phosphorylation.

Now, after decades of investigating the "new" sugar-based protein modification they discovered, the Johns Hopkins team admits that they themselves were surprised by their latest results. Published recently in the Proceedings of the National Academy of Sciences, their findings show that the surreptitious sugar switch is likely as influential and ubiquitous as its phosphate counterpart and, indeed, even plays a role in regulating phosphorylation itself.

More to the point, the work has implications for finding new treatments for a number of diseases such as diabetes, neurodegeneration and cancer, because the new switches form yet another potential target for manipulation by drugs.

"Like dark matter in the cosmos, it's hard to find even though it's very abundant," says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine, referring to the sugar (O-GlcNAc, pronounced oh-GLICK-nac) that carries out GlcNAcylation.

For years, Hart's team thought of GlcNAcylation as phosphorylation's foil; a simple, classic case of either-or. New technologies involving molecular sleuthing with a mass spectrometer allowed them to measure the extent to which the addition of sugar to proteins affects phosphorylation.

Of 428 sites on which phosphate was being added to and taken off of proteins, all responded in some way to increased O-GlcNAc: 280 decreased phosphorylation and 148 increased phosphorylation.

"The influence of sugar is striking," Hart says. "The presence of O-GlcNAc causes the enzymes that add the phosphate to do something different, and this cross-talk itself can modify proteins."

Because both sugar and phosphate modifications are linked to how cells work, they are fundamental to understanding and eventual control of the molecular processes that underlie many diseases.

"With regard to cancer, diabetes and Alzheimer's," says Hart, "most people in the world today have been studying the yang (phosphorylation) but not the yin (GlcNAcylation). There's another whole side that people were unaware of where diabetes diagnostics and cancer therapies could be targeted."


'/>"/>

Contact: Maryalice Yakutchik
myakutc1@jhmi.edu
443-287-2251
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Grant to fund answers about St. Johns River
2. Johns Hopkins scientists discover what drives the development of a fatal form of malaria
3. Johnson & Johnson honors 2008 recipients of the Dr. Paul Janssen Award for Biomedical Research
4. Vaginal reconstruction not needed for most inter-sex females, Hopkins study shows
5. Worth a thousand words: Hopkins researchers paint picture of cancer-promoting culprit
6. Hopkins researchers piece together gene network linked to schizophrenia
7. Researchers identify proteins involved in new neurodegenerative syndrome
8. Texas researchers and educators head for Antarctica
9. MGH researchers describe new way to identify, evolve novel enzymes
10. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
11. U of MN researchers discover noninvasive diagnostic tool for brain diseases
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... 2016 Ampronix facilitates superior patient care by providing unparalleled technology to leaders ... is the latest premium product recently added to the range of products distributed by ... ... ... LCD Medical Display- Ampronix News ...
(Date:5/20/2016)... 2016  VoiceIt is excited to announce its ... By working together, VoiceIt and VoicePass will ... VoicePass take slightly different approaches to voice biometrics, ... and usability. ... partnership. "This marketing and technology partnership ...
(Date:5/16/2016)... 16, 2016   EyeLock LLC , a market ... opening of an IoT Center of Excellence in ... the development of embedded iris biometric applications. ... convenience and security with unmatched biometric accuracy, making it ... from DNA. EyeLock,s platform uses video technology to deliver ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... ... of a Thai delegation at BIO 2016 in San Francisco. Located at booth ... will be available to answer questions and discuss the Thai biotechnology and life ...
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... ... features a variety of fracture-specific plating options designed to address fractures of the ... fracture fixation solutions. , The Acumed Ankle Plating System 3 is composed of ...
(Date:5/25/2016)... ... May 25, 2016 , ... Founder of the Fitzmaurice ... surgery and surgery of the hand by the National Board of Physicians and ... above and beyond in his pursuit of providing the most comprehensive, effective treatment ...
(Date:5/25/2016)... ... May 25, 2016 , ... The American Medical Informatics Association ... the National Coordinator for Health IT (ONC) outlining a measurement approach to interoperability ... available when and where it was needed. The organization of health informatics professionals ...
Breaking Biology Technology: