Navigation Links
Johns Hopkins researchers capture jumping genes
Date:2/4/2011

An ambitious hunt by Johns Hopkins scientists for actively "jumping genes" in humans has yielded compelling new evidence that the genome, anything but static, contains numerous pesky mobile elements that may help to explain why people have such a variety of physical traits and disease risks.

Using bioinformatics to compare the standard assembly of genetic elements as outlined in the reference human genome to raw whole-genome data from 310 individuals recently made available by the 1000 Genomes Project, the team revealed 1,016 new insertions of RIPs, or retrotransposon insertion polymorphisms, thereby expanding the catalog of insertions that are present in some individuals and absent in others. Their results appeared online October 27 in Genome Research.

Retrotransposons are travelling bits of DNA that replicate by copying and pasting themselves at new locations in the genome. Having duplicated themselves and accumulated over evolutionary history, transposable elements now make up about half of the human genome. However, only a tiny subfamily of these insertions known as LINE-1 (L1) is still active in humans. Line 1 insertions are able to mobilize not only themselves but also other pieces of DNA.

"In any individual, only between 80 to 100 retrotransposons are actively copying and inserting into new sites," says Haig Kazazian, M.D., professor of human genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine. "We're not only discovering where they are and who has which ones, but also finding out that they insert with a remarkable frequency: On the order of one in every 50 individuals has a brand-new insertion that wasn't in their parents."

The researchers recognized L1 retrotransposons distinguishing them from the vast amount of fixed "fossil" transposable elements that litter the genome because these actively jumping genes are human specific and almost exactly the same in sequence from one person to another.

"Our genome contains around half a million interspersed L1 sequences that have accumulated over evolutionary history, along with over a million more repeats, most of which were mobilized by L1 elements," explains Adam D. Ewing, Ph.D., a postdoctoral fellow in Kazazian's lab. "Since the vast majority of these are ancestral and therefore common to all humans and even some of our primate relatives, we can ignore them and focus on L1s that contain human-specific characters in their sequences. Those are the actively mobilized elements responsible for considerable genomic diversity among human individuals."

The high frequency of these L1 insertions gives us a better idea about the extent of human diversity, according to Kazazian, whose 22-year focus on retrotransposons seeks to reveal how they alter the expression of human genes.

Just as the structural variants known as single nucleotide polymorphisms (or SNPs, pronounced "snips") serve as markers for various diseases, the hope is that RIPs which are up to 6,000 times bigger than SNPs, and therefore may have a stronger effect on gene expression will correlate with disease phenotypes.

"In that same way that someone had to go out and find the SNPs, this study was about finding RIPs that remain active and continue to produce new insertions," Kazazian says. "Now we have the background necessary to begin studies that may correlate these L1 insertions with everything from autism to cancer."


'/>"/>

Contact: Maryalice Yakutchik
myakutc1@jhmi.edu
443-287-2251
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. Johns Hopkins researchers detect sweet cacophony while listening to cellular cross-talk
2. Johns Hopkins scientists pull proteins tail to curtail cancer
3. Case Western Reserve University works with Johnson & Johnson Services Inc. on research grant
4. Pancreatic Cancer Action Network-AACR Pathway to Leadership Grant awarded to Johns Hopkins Early Career investigator
5. Johns Hopkins scientists discover a controller of brain circuitry
6. JDRF announces diabetes research program with Johnson & Johnson
7. Johnson & Johnson award goes to research of the cause of brain cell damage in Parkinsons
8. American Society for Microbiology honors Ryan Johnson
9. UNCs Dr. Sean McLean receives Robert Wood Johnson Foundation award
10. Johns Hopkins researchers reshape basic understanding of cell division
11. Encyclopedia of Life names Dr. Rebecca Johnson a 2011 Rubenstein Fellow
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/22/2017)... 2017   Neurotechnology , a provider of ... announced the release of the SentiVeillance 6.0 ... facial recognition using up to 10 surveillance, security ... The new version uses deep neural-network-based facial detection ... utilizes a Graphing Processing Unit (GPU) for enhanced ...
(Date:3/16/2017)... , March 16, 2017 CeBIT 2017 - Against identity fraud ... Continue Reading ... Used combined in one project, multi-biometric solutions provide a ... Used combined ... ...
(Date:3/7/2017)... March 7, 2017   HireVue , the leading ... companies identify the best talent, faster, today announced the ... Officer (CSO) and Diana Kucer as Chief ... seasoned executive team poised to drive continued growth in ... a year of record bookings in 2017. ...
Breaking Biology News(10 mins):
(Date:3/28/2017)... , March 28, 2017 /PRNewswire/ -RepliCel Life Sciences Inc. (OTCQB: ... to report compelling safety and clinical data from its phase ... 1 collagen-expressing, hair follicle-derived fibroblasts (RCT-01) as a treatment for ... ... a complete safety profile at 6 months and showed no ...
(Date:3/27/2017)... , March 27, 2017 Roka Bioscience, Inc. (NASDAQ: ... solutions for the detection of foodborne pathogens,  today announced that ... & Company Spring 2017 Convention on March 29 at 9:50am ... Marriott Marquis. About Roka Bioscience ... Roka Bioscience ...
(Date:3/27/2017)... ... March 27, 2017 , ... Biopsies from non-small ... samples with limited tumor content in a large background of normal or wild ... the need for reliable detection of low abundance somatic mutations, particularly in small ...
(Date:3/27/2017)... Va. , March 27, 2017  Perthera,s Chief ... Cancer Center, Subha Madhavan , Ph.D., will be ... Joint Summits Panels. On Monday, March 27, 2017, she ... Oncology Data More Usable for Research and Care" (from ... March 28, 2017, she will be a participant in ...
Breaking Biology Technology: