Navigation Links
Jefferson scientists identify a new protein involved in longevity
Date:5/7/2010

(PHILADELPHIA) Researchers in the Department of Biochemistry and Molecular Biology at Thomas Jefferson University have found that the level of a single protein in the tiny roundworm C. elegans determines how long it lives. Worms born without this protein, called arrestin, lived about one-third longer than normal, while worms that had triple the amount of arrestin lived one-third less.

The research also showed that arrestin interacts with several other proteins within cells to regulate longevity. The human version of one of these proteins is PTEN, a well-known tumor suppressor. The study, to be published in the online edition of the Journal of Biological Chemistry, was chosen by the journal as the "Paper of the Week" considered in the top one percent of published articles.

Because most proteins in worms have human counterparts, these findings may have relevance to human biology and the understanding of cancer development, said Jeffrey L. Benovic, Ph.D., professor and chair of the department.

"The links we have found in worms suggest the same kind of interactions occur in mammals although human biology is certainly more complicated. We have much work to do to sort out these pathways, but that is our goal," said Dr. Benovic.

Researchers use the roundworm as a model because it offers a simple system to study the function of genes and proteins that are relevant to human biology. The worm, for example, has one arrestin gene, whereas humans have four. Worms only have 302 neurons compared to the 100 billion or so in the human brain. In addition, their short lifespan of two to three weeks allows for timely observation of effects on longevity.

Dr. Benovic and the study's first author, Aimee Palmitessa, Ph.D., a postdoctoral research fellow, studied signaling pathways activated by G protein-coupled receptors. These receptors bind to all kinds of hormones, sensory stimuli (such as light, odorants and tastants), neurotransmitters, etc., which then activate a cascade of signals inside the cell. They regulate many physiological processes and are the target for about half of the drugs currently on the market.

"When it comes to receptors, worms are actually more complex," said Dr. Benovic. "Humans have about 800 different kinds of G protein-coupled receptors while the worm has about 1,800. It relies upon these receptors to respond to sensory stimuli as well as various neurotransmitters and hormones."

Arrestins were initially found to turn off the activation of G protein-coupled receptors inside cells. "Their name comes from the fact that they arrest the activity of receptors, so the worm offers a good way to study how its single arrestin protein interacts with protein receptors," says Dr. Benovic. Two of the four arrestins that humans have are devoted to regulating receptors that respond to visual stimuli while the other two regulate most other receptors.

In this study, Dr. Palmitessa deleted the single arrestin gene in worms to see what would happen, and found, to her surprise, that these worms lived significantly longer. She also found that over-expressing arrestin in worms shortened their lifespan. "A little less arrestin is good at least for worms," Dr. Benovic reported.

This isn't the first discovery made regarding longevity in worms. Researchers have already found that activity of the insulin-like growth factor-1 (IGF-1) receptor can influence longevity in worms a finding that has also been replicated in fruit flies, mice, and humans. Like arrestin, a little less IGF-1 receptor activity is good, Dr. Benovic explained. Further research has shown that caloric restriction can also reduce IGF-1 receptor activation and, conversely, over-expression of the IGF-1 receptor is found in some human cancers.

In this study, Dr. Benovic and Dr. Palmitessa dug a little deeper and found that in the worms, arrestin interacted with two other proteins that play a critical role in its ability to regulate longevity. One of those proteins is the tumor suppressor PTEN; mutations in PTEN are involved in a number of different cancers.

Dr. Benovic said the connection between human arrestin and PTEN is not clear. "We don't know at this point if human arrestins regulate PTEN function or if anything happens to arrestin levels during the development of cancer," he said. "Do increasing levels turn off more PTEN, thus promoting cancer, or do levels decrease and allow PTEN to be more active?

"If it turns out to be the first scenario that increasing amounts of arrestin turn off the tumor suppressor activity of PTEN, then it may be possible to selectively inhibit that process," he says. "We have some interesting work ahead."


'/>"/>

Contact: Emily Shafer
emily.shafer@jefferson.edu
215-955-6300
Thomas Jefferson University
Source:Eurekalert

Related biology news :

1. Jefferson urologists studying regenerated neo-bladder to help spinal cord injury patients
2. Jefferson scientists studying the effects of high-dose vitamin C on non-Hodgkin lymphoma patients
3. Jefferson receives $11.6M NIH grant to study novel mechanisms of heart failure
4. Jefferson scientists deliver toxic genes to effectively kill pancreatic cancer cells
5. Jefferson Department of Surgery announces new pancreas tumor registry
6. Jefferson scientists discover a key protein regulator of inflammation and cell death
7. Jefferson researcher awarded Landenberger Foundation grant for ALS research
8. Jefferson receives $1.7 million grant to study stem cells in intervertebral discs of the spine
9. US Department of State names UCR entomologist a Jefferson Science Fellow
10. UK scientists working to help cut ID theft
11. Scientists show that mitochondrial DNA variants are linked to risk factors for type 2 diabetes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/15/2016)... 2016 Transparency Market Research ... Market by Application Market - Global Industry Analysis Size Share ... the report, the  global gesture recognition market  was ... is estimated to grow at a CAGR of ... Increasing application of gesture recognition technology ...
(Date:6/7/2016)... , June 7, 2016  Syngrafii Inc. and ... business relationship that includes integrating Syngrafii,s patented LongPen™ ... project. This collaboration will result in greater convenience ... credit union, while maintaining existing document workflow and ... ...
(Date:6/2/2016)... NEW YORK , June 2, 2016   The ... (Weather), is announcing Watson Ads, an industry-first capability in which ... advertising, by being able to ask questions via voice or ... Marketers have long ... with the consumer, that can be personal, relevant and valuable; ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... Raleigh, NC (PRWEB) , ... June 24, 2016 , ... ... find the most commonly-identified miRNAs in people with peritoneal or pleural mesothelioma. Their findings ... here to read it now. , Diagnostic biomarkers are signposts in the blood, ...
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
(Date:6/23/2016)...  The Prostate Cancer Foundation (PCF) is pleased to announce 24 ... for prostate cancer. Members of the Class of 2016 were selected from a ... Read More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... ... June 23, 2016 , ... STACS DNA Inc., the sample ... the Arkansas State Crime Laboratory, has joined STACS DNA as a Field Application Specialist. ... said Jocelyn Tremblay, President and COO of STACS DNA. “In further expanding our capacity ...
Breaking Biology Technology: