Navigation Links
It's not easy being green

LA JOLLA, CAThe seeds sprouting in your spring garden may still be struggling to reach the sun. If so, they are consuming a finite energy pack contained within each seed. Once those resources are depleted, the plant cell nucleus must be ready to switch on a "green" photosynthetic program. Researchers at the Salk Institute for Biological Studies recently showed a new way that those signals are relayed.

In a study published in the May 24, 2011, issue of the journal Current Biology, a team led by Joanne Chory, Ph.D., professor and director of the Plant Molecular and Cellular Biology Laboratory, and including postdoctoral fellows, Jesse Woodson, Ph.D., and Juan Perez-Ruiz, Ph.D., identify a signaling factor sent by plant chloroplasts to turn on photosynthesis-related genes. Their finding may help achieve greater crop yields and better plant health.

"When a seedling establishes a photosynthetic lifestyle, it needs to activate several thousand genes in the nucleus," says Chory, also a Howard Hughes Medical Institute investigator and holder of the Howard H. and Maryam R. Newman Chair in Plant Biology. "One of the signals to do this comes from the organelle in charge of photosynthesis, called the chloroplast. In this study we identified this signaling molecule as heme."

Although in plants and animals most genes reside in the nucleus, small DNA rings of genes are found in other cellular venues such as energy-producing mitochondria. Plant chloroplasts, whose primary function is to turn light and carbon dioxide into energy and carbohydrates required for growth, also contain genes that regulate photosynthesis-related factors encoded in the plant cell nucleus.

"The Chory lab previously identified mutations in five genes in Arabidopsis thaliana plants that were unable to synthesize molecules such as chlorophyll or respond to signals generated by intermediates of the chlorophyll biosynthetic pathway," explains Woodson, the study's first author. "Those studies suggested that when plants undergo stress, an intermediate accumulates that tells the nucleus to stop 'turning green.'"

These mutantscalled GUN (for genomes uncoupled) 1 to 5lack proteins necessary to relay these signals to the nucleus. Chloroplasts in normal plants might deploy those signals when plants encounter stress, such as too much heat or too little water. Inhibitory signals could also be sent when germinating sprouts are not yet mature enough to make the leap from relying on the seed energy pack to generating their own energy using sunlight.

Suspecting that positive signals must also govern the process, the team screened Arabidopsis for factors that switched photosynthetic proteins on, rather than off. For that, they employed an experimental approach called activation tagging, in which gene-activating DNA sequences are inserted randomly into the Arabidopsis genome and plants are then subjected to a herbicide shower. The team then looked for any survivor that persisted in making photosynthetic proteins. By definition, in that mutant plant a gene required to sustain a photosynthetic growth response must have been experimentally switched on.

What they found was a gene designated gun 6, which encodes the enzyme ferrochelatase 1 (FC1), the first gun mutant indicating a positive rather than a negative signal. "Gun 6 mutants make too much FC1 protein, an enzyme required to make a signaling molecule called heme," explains Woodson. Although it is a cofactor in numerous plant and animal pathways, heme is most famous as the oxygen-carrying component of hemoglobin.

The study suggests that excess heme drives expression of photosynthesis-related genes. "If a plant makes abnormally high levels of heme, the nucleus could be unaware that the chloroplast is nonfunctional and may keep making growth-related proteins," says Woodson. "Heme is likely the signal sent from a healthy chloroplast to the nucleus saying it is time to make proteins required for photosynthesis."

The team also genetically engineered plants to make too much of an FC1 isoform, known as FC2, and found photosynthesis-related genes were not upregulated, suggesting that heme made from FC2 differs from that made by FC1, and that overall signals regulating plant growth are highly complex.

The mustard plant Arabidopsis is favored by plant biologists for the same reasons that animal biologists rely on mice and fruitfliesit's easy to grow, compact, reproduces rapidly (which for plant biologists means it makes tons of seedsand fast), its genome is sequenced, and it can be manipulated genetically.

Plus, it is incredibly boring. "There is nothing unusual about Arabidopsis," notes Woodson. "Which is good, because anything we learn from it will be generally true for most plants."

Affirming that "every plant" quality, the team isolated the corn (Zea mays) equivalent of the FC1 gene and engineered Arabidopsis to make artificially high levels of the corn protein. Like gun 6 mutants, those plants continued to make photosynthesis-related genes when subjected to herbicide, demonstrating that FC1 likely does the same thing in a crop plant as it does in a weed. However, analysis of corn, rice or barley would be experimentally less practical, given their longer growth cycles and the space required to grow them.

"Overall, this work answers basic questions regarding how a plant grows, builds chloroplasts and harvests light energy in order to turn into a photosynthetic organism," says Chory. "Understanding how plants coordinate gene expression between the chloroplast and nucleus will ultimately increase crop yields in the field, where plants often encounter multiple stresses during the growing season."


Contact: Kat Kearney
858-453-4100 x1340
Salk Institute

Related biology news :

1. Issues at intersection of climate change and health impact global well-being
2. Promising new drug being evaluated as possible treatment option for fragile X syndrome
3. The importance of being helpful -- Cooperative cichlids boost their own reproductive success
4. DNA-Prokids: Genetic identification against traffic in human beings
5. Cancer: The cost of being smarter than chimps?
6. Scientists capture the first image of memories being made
7. Now butterflies are also being counted in China, Australia and Israel
8. Ben-Gurion University of the Negev technology being developed for use in Jordan desalination plant
9. Fear of being laughed at crosses cultural boundaries
10. DNA against traffic in human beings
11. Being a standout has its benefits, study shows
Post Your Comments:
Related Image:
It's not easy being green
(Date:11/17/2015)... Pressure BioSciences, Inc. (OTCQB: PBIO) ("PBI" and ... of broadly enabling, pressure cycling technology ("PCT")-based sample preparation ... it has received gross proceeds of $745,000 from an ... "Offering"), increasing the total amount raised to date in ... are expected in the near future. ...
(Date:11/12/2015)... Nov. 12, 2015  A golden retriever that stayed ... dystrophy (DMD) has provided a new lead for treating ... the Broad Institute of MIT and Harvard and the ... . Cell, pinpoints a protective ... the disease,s effects. The Boston Children,s lab of ...
(Date:11/12/2015)... --  Growing need for low-cost, easy to use, ... the way for use of biochemical sensors for ... clinical, agricultural, environmental, food and defense applications. Presently, ... applications, however, their adoption is increasing in agricultural, ... on improving product quality and growing need to ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... India , November 24, 2015 ... a new market research report "Oligonucleotide Synthesis Market by ... Application (PCR, Gene Synthesis, Diagnostic, DNA, RNAi), End-User (Research, ... 2020", published by MarketsandMarkets, the market is expected to ... Million in 2015, at a CAGR of 10.1% during ...
(Date:11/24/2015)... ALBANY, New York , November 24, 2015 /PRNewswire/ ... According to a recent market research report released by ... is projected to expand at a CAGR of 17.5% ... titled "Non-invasive Prenatal Testing Market - Global Industry Analysis, ... 2022", estimates the global non-invasive prenatal testing market to ...
(Date:11/24/2015)... ... November 24, 2015 , ... In harsh ... Insertion points for in-line sensors can represent a weak spot where leaking process ... series of retractable sensor housings , which are designed to tolerate extreme process ...
(Date:11/24/2015)... 2015 Capricor Therapeutics, Inc. (NASDAQ: ... discovery, development and commercialization of first-in-class therapeutics, today announced ... is scheduled to present at the 2015 Piper Jaffray ... EST, at The Lotte New York Palace Hotel in ... . --> . ...
Breaking Biology Technology: