Navigation Links
Is the shape of a genome as important as its content?
Date:10/29/2010

If there is one thing that recent advances in genomics have revealed, it is that our genes are interrelated, "chattering" to each other across separate chromosomes and vast stretches of DNA. According to researchers at The Wistar Institute, many of these complex associations may be explained in part by the three-dimensional structure of the entire genome. A given cell's DNA spends most of its active lifetime in a tangled clump of chromosomes, which positions groups of related genes near to each other and exposes them to the cell's gene-controlling machinery. This structure, the researchers say, is not merely the shape of the genome, but also a key to how it works.

Their study, published online as a featured article in the journal Nucleic Acids Research, is the first to combine microscopy with advanced genomic sequencing techniques, enabling researchers to literally see gene interactions. It is also the first to determine the three-dimensional structure of the fission yeast genome, S. pombe. Applying this technique to the human genome may provide both scientists and physicians a whole new framework from which to better understand genes and disease, the researchers say.

"People are familiar with the X-shapes our chromosomes form during cell division, but what they may not realize is that DNA only spends a relatively small amount of time in that conformation," said Ken-ichi Noma, Ph.D., an assistant professor in Wistar's Gene Expression and Regulation program and senior author of the study. "Chromosomes spend the majority of their time clumped together in these large, non-random structures, and I believe these shapes reflect various nuclear processes such as transcription."

To map both individual genes and the overall structure of the genome, Noma and his colleagues combined next generation DNA sequencing with a technique called chromosome conformation capture (3C). They then used fluorescent probes to pinpoint the exact location of specific genes through a microscope. With these data, the researchers were able to create detailed three-dimensional computer models of the yeast genome.

Using this novel approach, the researchers can view genes as they interact with each other. Noma and his colleagues can view where highly active genes are located, or see if genes that are turned on and off together also reside near each other in the three-dimensional structure of the genome. In total, the Wistar researchers also studied 465 so-called gene ontology groups groups of genes that share a related purpose in the cell, such as structure or metabolism.

"When the chromosomes come together, they fold into positions that bring genes from different chromosomes near each other," Noma said. "This positioning allows the processes that dictate how and when genes are read to operate efficiently on multiple genes at once."

This structure is not merely an accident of chemical attractions within and among the chromosomes although that is certainly a part of the larger whole but an arrangement guided by other molecules in the cell to create a mega-structure that dictates genetic function, Noma says. He envisions a scenario where accessory molecules, such as gene-promoting transcription factors, bind to DNA and contribute to the ultimate structure of the genome as the chromosomes fold together.

"I believe we are looking at a new way to visualize both the genome itself and the movements of all the various molecules that act on the genome," Noma said.

According to the Wistar scientists, their techniques are scalable to the human genome, even though fission yeast only has three chromosomes. In fact, the researchers found signs of "transcription factories" clusters of related genes that are read, or "transcribed," at discrete sites which have been proposed to exist in mammals.


'/>"/>

Contact: Greg Lester
glester@wistar.org
215-898-3943
The Wistar Institute
Source:Eurekalert  

Related biology news :

1. Penn scientists discover cells reorganize shape to fit the situation
2. Wistar scientists find key to keeping killer T cells in prime shape for fighting infection, cancer
3. Apple or pear shape is not main culprit to heart woes -- its liver fat
4. Ancient magma superpiles may have shaped the continents
5. Root system architecture arises from coupling cell shape to auxin transport
6. Shape changes in aroma-producing molecules determine the fragrances we detect
7. Root system architecture arises from coupling cell shape to auxin transport
8. As super-predators, humans reshape their prey at super-natural speeds
9. Grape shapes
10. Caltech and UCSD researchers shed light on how proteins find their shapes
11. RNA research strategy for Europe takes shape
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Is the shape of a genome as important as its content?
(Date:12/15/2016)... Dec. 15, 2016 Advancements in ... health wellness and wellbeing (HWW), and security ... three new passenger vehicles begin to feature ... recognition, heart beat monitoring, brain wave monitoring, ... monitoring, and pulse detection. These will be ...
(Date:12/8/2016)... 2016 Market Research Future published a half cooked research ... Biometric Security and Service Market is expected to grow over the ... Market Highlights: ... Mobile Biometric Security and Service Market ... need of authentication and security from unwanted cyber threats. The increasing ...
(Date:12/7/2016)... --  Avanade is helping Williams Martini Racing, one ... exploit biometric data in order to critically analyse every ... edge against their rivals after their impressive, record-breaking pit ... worked with Williams during the 2016 season to capture ... breathing rate, temperature and peak acceleration) for key members ...
Breaking Biology News(10 mins):
(Date:1/14/2017)... , Jan. 13, 2017  The Alliance for ... in response to FDA final guidance on ... its continued leadership in emphasizing the importance of distinct ... keenly aware of the benefits biosimilars will bring to ... Yet the portion of the Guidance dealing ...
(Date:1/13/2017)... ... January 13, 2017 , ... ... companies to offer its customers three new solutions for measurements where traditional cuvette ... handy if a customer has an oddly-shaped sample that would not fit into ...
(Date:1/12/2017)... ... January 12, 2017 , ... ... 26-year-old Lisa Rosendahl’s doctors gave her only a few months to live. Now ... combination that has stabilized Rosendahl’s disease and increased both the quantity and quality ...
(Date:1/12/2017)... , ... January 12, 2017 ... ... rapid adoption of Limfinity® Cloud, RURO has enhanced the platform to accommodate ... groups, federated login, rapid data searching, and more. In addition to these ...
Breaking Biology Technology: