Navigation Links
Iowa State researchers look for smaller, cheaper, 1-dose vaccines

A team of Iowa State University researchers is examining a new vaccine method that may change the way we get vaccinations.

Michael Wannemuehler and his team of researchers is hoping to find a way to produce vaccines that work better, use smaller doses and require only one trip to the doctor's office.

Traditionally, injectable vaccines have often been prepared from killed bacteria. The vaccinated person's immune system then learns to recognize the bacteria as a threat and consequently builds up defenses against it. Then, if the individual is exposed to the live version of the infectious agent, his or her body is already prepared to defend itself.

Wannemuehler's research is focused on the use of just a part of the bacteria -- a protein -- as a vaccine, instead of the entire bacteria, coupled with novel polymers that will be used to deliver these vaccines. This combination of new approaches will allow vaccines doses to be smaller, safer and induce fewer side effects.

"As we move away from using whole bacteria, we're going to more molecular approaches with purified proteins or portions of proteins," said Wannemuehler, a professor of veterinary microbiology and preventative medicine. "What these technologies should allow us to do is, instead of injecting 100 units to get protection, we can inject one unit, for example."

Wannemuehler's research targets the bacteria that causes plague, a disease that's rare in the United States, but is still found in other parts of the world.

Using select proteins of the bacteria coupled with unique polymers can reduce the amount of vaccine needed as well as costs for shipping and storage. That makes the vaccine economically feasible for areas at a great distance, such as Africa, where vaccines can be difficult to obtain.

Also, vaccinating a large population can be difficult if more than one dose or injection is required. In places where doctors are scarce, locating and vaccinating patients can be difficult. In addition, having the same patients return for their booster vaccinations can be even more complicated.

"Another aspect is the hope that this would be single dose," said Wannemuehler. "We hope we can get a robust response with one dose."

And there will likely be uses beyond the plague.

"If this technology works here," said Wannemuehler, "it's completely transferable to any protein, with minor changes."

Wannemuehler is working with BioProtection Systems Corp. of Ames on this research. BPSC hopes to supply lower-cost vaccines to government agencies for use where the plague is still a threat.

"We are thankful that the Iowa Values Fund supports our collaboration with Iowa State University and allows us to combine our broadly applicable vaccine technology with theirs for the development of more effective vaccines," said Joe Lucas of BPSC, located at the Iowa State University Research Park.


Contact: Michael Wannemuehler
Iowa State University

Related biology news :

1. Ingram Micro to Distribute New Fujitsu Biometric Login Products for Novell eDirectory in United States
2. LSU and Ohio State battle on football field, collaborate in research field
3. Poor Americans in the United States suffer hidden burden of parasitic and other neglected diseases
4. Emory, Ohio State launch partnership in predictive and personalized health care
5. Tiny dust particles from Asian deserts common over western United States
6. K-State specialist in tick-borne pathogens receives $1.8 million grant
7. K-State researchers findings on E. coli
8. Study of malaria parasite in patient blood finds distinct physiological states
9. Safeway Inc. and PCF to fund landmark prostate cancer research collaboration
10. First-ever State of the Carbon Cycle Report finds troubling imbalance
11. Proteins pack tighter in crowded native state
Post Your Comments:
(Date:4/28/2016)... 28, 2016 First quarter 2016:   ... compared with the first quarter of 2015 The gross ... M (loss: 18.8) and the operating margin was 40% (-13) ... Cash flow from operations was SEK 249.9 M (21.2) , ... is unchanged, SEK 7,000-8,500 M. The operating margin for ...
(Date:4/19/2016)... DUBAI , UAE, April 20, 2016 ... can be implemented as a compact web-based "all-in-one" system ... in the biometric fingerprint reader or the door interface ... requirements of modern access control systems. The minimal dimensions ... the ID readers into the building installations offer considerable ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... -- Sequenom, Inc. (NASDAQ: SQNM ), a life ... development of innovative products and services, announced today that ... denied its petition to review decisions by ... Patent No. 6,258,540 (",540 Patent") are not patent eligible ... Court,s Mayo Collaborative Services v. Prometheus Laboratories decision.  In ...
(Date:6/27/2016)... ... June 27, 2016 , ... Newly ... technologies, services and solutions to the healthcare market. The company's primary focus is ... manufacturing, sales and marketing strategies that are necessary to help companies efficiently bring ...
(Date:6/27/2016)... --  Ginkgo Bioworks , a leading organism design ... awarded as one of the World Economic Forum,s ... innovative companies. Ginkgo Bioworks is engineering biology to ... in the nutrition, health and consumer goods sectors. ... including Fortune 500 companies to design microbes for ...
(Date:6/24/2016)... ... , ... While the majority of commercial spectrophotometers and fluorometers use the z-dimension ... are higher end machines that use the more unconventional z-dimension of 20mm. Z-dimension ... bottom of the cuvette holder. , FireflySci has developed several Agilent flow cell ...
Breaking Biology Technology: