Navigation Links
Iowa State, Ames Lab researchers invent new tool to study single biological molecules
Date:8/3/2012

AMES, Iowa By blending optical and atomic force microscope technologies, Iowa State University and Ames Laboratory researchers have found a way to complete 3-D measurements of single biological molecules with unprecedented accuracy and precision.

Existing technologies allow researchers to measure single molecules on the x and y axes of a 2-D plane. The new technology allows researchers to make height measurements (the z axis) down to the nanometer just a billionth of a meter without custom optics or special surfaces for the samples.

"This is a completely new type of measurement that can be used to determine the z position of molecules," said Sanjeevi Sivasankar, an Iowa State assistant professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory.

Details of the technology were recently published by the journal Nano Letters. Co-authors of the study are Sivasankar; Hui Li, an Iowa State post-doctoral research associate in physics and astronomy and an associate of the Ames Laboratory; and Chi-Fu Yen, an Iowa State doctoral student in electrical and computer engineering and a student associate of the Ames Laboratory.

The project was supported by lab startup funds from Iowa State University and a $120,075 grant from the Grow Iowa Values Fund, a state economic development program.

Sivasankar's research program has two objectives: to learn how biological cells adhere to each other and to develop new tools to study those cells.

That's why the new microscope technology called standing wave axial nanometry (SWAN) was developed in Sivasankar's lab.

Here's how the technology works: Researchers attach a commercial atomic force microscope to a single molecule fluorescence microscope. The tip of the atomic force microscope is positioned over a focused laser beam, creating a standing wave pattern. A molecule that has been treated to emit light is placed within the standing wave. As the tip of the atomic force microscope moves up and down, the fluorescence emitted by the molecule fluctuates in a way that corresponds to its distance from the surface. That distance can be compared to a marker on the surface and measured.

"We can detect the height of the molecule with nanometer accuracy and precision," Sivasankar said.

The paper reports that measurements of a molecule's height are accurate to less than a nanometer. It also reports that measurements can be taken again and again to a precision of 3.7 nanometers.

Sivasankar's research team used fluorescent nanospheres and single strands of DNA to calibrate, test and prove their new instrument.

Users who could benefit from the technology include medical researchers who need high-resolution data from microscopes. Sivasankar thinks the technology has commercial potential and is confident it will advance his own work in single molecule biophysics.

"We hope to use this technology to move that research forward," he said. "And in doing that, we'll continue to invent new technologies."


'/>"/>
Contact: Sanjeevi Sivasankar
sivasank@iastate.edu
515-294-1220
Iowa State University
Source:Eurekalert  

Related biology news :

1. Wayne State researchers working to improve genetic analysis, disorder detection
2. Superbird stuns researchers
3. Massachusetts Eye and Ear researchers discover elusive gene that causes a form of blindness from birth
4. Researchers monitor red tides in Chesapeake Bay
5. BUSM researchers find link between childhood abuse and age at menarche
6. Researchers dig through the gene bank to uncover the roots of the evolutionary tree
7. Researchers find new gene mutation associated with congenital myopathy
8. NASA and university researchers find a clue to how life turned left
9. To understand childhood obesity, researchers look to inactive, fat rats
10. Researchers study knee stress at tissue, cellular levels
11. UConn researchers discover that red tide species is deadlier than first thought
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Iowa State, Ames Lab researchers invent new tool to study single biological molecules
(Date:12/22/2016)... December 22, 2016 SuperCom (NASDAQ: ... solutions for the e-Government, Public Safety, HealthCare, and Finance sectors announced ... has been selected to implement and deploy a community-based supportive services ... Northern California , further expanding its presence in the state. ... This new program, ...
(Date:12/19/2016)... España y TORONTO , 19 de diciembre de ... Biologics Inc. que permitirá el desarrollo acelerado de MSC-1, un anticuerpo ... varios tipos de tumor en 2017, con múltiples sitios previstos a ... ... con objetivo en el factor inhibidor de leucemia (LIF), una citoquina ...
(Date:12/16/2016)... , Dec. 16, 2016 The global wearable medical device ... billion by 2021 from USD 5.31 billion in 2016, at a ... ... driven by technological advancements in medical devices, launch of a growing ... for wireless connectivity among healthcare providers, and increasing focus on physical ...
Breaking Biology News(10 mins):
(Date:1/19/2017)... ... 2017 , ... DaVita Clinical Research (DCR), a ... device development, and Prism Clinical Research , a leader in providing fully ... Clinical Trials (VCT) has been selected by both companies as an exclusive ...
(Date:1/19/2017)... Acupath Laboratories, Inc., a leading provider of ... Executive Committee that will guide the company,s vision and ... Cucci , a 15-year veteran of the anatomic pathology ... to Chief Sales Officer .  Prior to joining ... sales leadership roles at several leading lab industry organizations ...
(Date:1/18/2017)... According to a new market research report "In situ Hybridization Market ... User (Molecular Diagnostic Laboratories, Academic and Research Institutions) - Global Forecast to 2021" ... 2021 from USD 557.1 Million in 2016, growing at a CAGR of 5.8%. ... ... MarketsandMarkets Logo ...
(Date:1/18/2017)... --  Parent Project Muscular Dystrophy (PPMD) , a nonprofit ... dystrophy (Duchenne) , today announced a $600,000 grant to ... (NJIT) and Talem Technologies (Talem) as part of the ... assist people living with Duchenne. PPMD is funding a ... computer, software, a force sensor and a motor – ...
Breaking Biology Technology: