Navigation Links
Iowa State, Ames Lab researchers find the mechanism that forms cell-to-cell catch bonds
Date:6/5/2014

AMES, Iowa Certain bonds connecting biological cells get stronger when they're tugged. Those bonds could help keep hearts together and pumping; breakdowns of those bonds could help cancer cells break away and spread.

Those bonds are known as catch bonds and they're formed by common adhesion proteins called cadherins. Sanjeevi Sivasankar, an Iowa State University assistant professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory, has described catch bonds as "nanoscale seatbelts. They become stronger when pulled."

But how does that happen? How can bonds get stronger under force?

Sivasankar and his research team have found long-lived, force-induced hydrogen bonds are the answer. A paper describing their findings, "Resolving the molecular mechanism of cadherin catch bond formation," has just been published online by Nature Communications.

Sivasankar is the corresponding author. Co-authors are Kristine Manibog, an Iowa State graduate student in physics and astronomy and a student associate of the Ames Laboratory; Hui Li, of the Suzhou Institute of Biomedical Engineering and Technology of the Chinese Academy of Sciences in Suzhou New District, China; and Sabyasachi Rakshit, of the Indian Institute of Science Education and Research in Mohali, India. Li and Rakshit are former postdoctoral researchers in Sivasankar's laboratory.

The team's research was supported by grants from the American Cancer Society and the American Heart Association.

Sivasankar said strong cell-to-cell bonds are important to heart health and fighting cancer. He said the bonds connecting heart cells have to withstand constant mechanical forces. And, in some cancers, he said bonds no longer resist forces, allowing cancer cells to detach and spread.

To find the mechanism behind the strong ties created by catch bonds, Sivasankar's research team began with molecular dynamics and steered molecular dynamics computer simulations based on data from previous experiments. They found that two rod-shaped cadherins bound together in an X-shape (called an X-dimer) form catch bonds when pulled and in the presence of calcium ions.

The calcium ions keep the cadherins rigid and ordered while the pulling brings parts of the proteins closer together. All of that allows a series of hydrogen bonds to form. These long-lived, force-induced hydrogen bonds lock the X-dimers into tighter contact.

Sivasankar said the researchers followed up the simulations with single-molecule experiments using atomic force microscopy. The experiments confirmed that cadherin X-dimers, when pulled and exposed to high calcium ion concentrations, formed catch bonds. Take away the force or the calcium ions, and catch bond formation was eliminated.

All of this, Sivasankar said, helps explain the biophysics of cell-to-cell adhesion. And that's important to all of us.

"Robust cadherin adhesion," the researchers wrote in their paper, "is essential for maintaining the integrity of tissue such as the skin, blood vessels, cartilage and muscle that are exposed to continuous mechanical assault."


'/>"/>

Contact: Sanjeevi Sivasankar
sivasank@iastate.edu
515-294-1220
Iowa State University
Source:Eurekalert  

Related biology news :

1. Iowa State, Ames Lab researchers invent new tool to study single biological molecules
2. Iowa State, Ames Lab researchers study the structure of drug resistance in tuberculosis
3. Iowa State, Ames Lab researchers find 3 unique cell-to-cell bonds
4. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
5. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
6. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
7. UNH researchers find African farmers need better climate change data to improve farming practices
8. Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock
9. Researchers uncover molecular pathway through which common yeast becomes fungal pathogen
10. Researchers print live cells with a standard inkjet printer
11. Columbia Engineering and Penn researchers increase speed of single-molecule measurements
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Iowa State, Ames Lab researchers find the mechanism that forms cell-to-cell catch bonds
(Date:11/21/2016)...   Neurotechnology , a provider of high-precision ... that the MegaMatcher On Card fingerprint matching algorithm ... NIST Minutiae Interoperability Exchange (MINEX) III ... of the evaluation protocol. The ... fingerprint templates used to establish compliance of template ...
(Date:11/17/2016)... 2016 Global Market Watch: Primarily supported ... Population-Based Banks and Academics) market is to witness a value ... shows the highest Compounded Annual Growth Rate (CAGR) of 10.75% ... the analysis period 2014-2020. North America ... by Europe at 9.56% respectively. ...
(Date:11/16/2016)... , Nov. 16, 2016 Sensory Inc ... and security for consumer electronics, and VeriTran ... and retail industry, today announced a global partnership ... way to authenticate users of mobile banking and ... TrulySecure™ software which requires no specialized biometric ...
Breaking Biology News(10 mins):
(Date:11/30/2016)... and BEIJING , Nov. 30, 2016 ... provider of genomic services and solutions with cutting edge ... it has completed a USD $75 Million [515 Million ... Ltd.,s CMB International Capital Management ( Shenzhen ... Co., Ltd. ("SDIC Innovation") and Shanghai Sigma Square Investment ...
(Date:11/30/2016)... 30, 2016   Merck , a leading science ... into a set of agreements with Evotec AG, whereby ... of genetic reagents such as CRISPR and shRNA libraries. ... offers an accelerated pathway to explore and identify new ... identification of new targets, a process that can be ...
(Date:11/30/2016)... Park, NC (PRWEB) , ... November 30, 2016 ... ... company engaged in the development of a new orally administered treatment for Alzheimer’s ... and neuroimaging results of a Phase 2a clinical trial of T3D-959 in mild ...
(Date:11/30/2016)... Toronto, ON (PRWEB) , ... November 30, 2016 ... ... focused on discovery and development of precision treatments for neurodegenerative diseases, today announced ... disease (AD) (announced on November 3, 2016) blocked propagation of toxic, prion-like forms ...
Breaking Biology Technology: