Navigation Links
Iowa State, Ames Lab researchers find 3 unique cell-to-cell bonds
Date:11/1/2012

AMES, Iowa The human body has more than a trillion cells, most of them connected, cell to neighboring cells.

How, exactly, do those bonds work? What happens when a pulling force is applied to those bonds? How long before they break? Does a better understanding of all those bonds and their responses to force have implications for fighting disease?

Sanjeevi Sivasankar, an Iowa State assistant professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory, is leading a research team that's answering those questions as it studies the biomechanics and biophysics of the proteins that bond cells together.

The researchers discovered three types of bonds when they subjected common adhesion proteins (called cadherins) to a pulling force: ideal, catch and slip bonds. The three bonds react differently to that force: ideal bonds aren't affected, catch bonds last longer and slip bonds don't last as long.

The findings have just been published by the online Early Edition of the Proceedings of the National Academy of Sciences.

Sivasankar said ideal bonds the ones that aren't affected by the pulling force had not been seen in any previous experiments. The researchers discovered them as they observed catch bonds transitioning to slip bonds.

"Ideal bonds are like a nanoscale shock absorber," Sivasankar said. "They dampen all the force."

And the others?

"Catch bonds are like a nanoscale seatbelt," he said. "They become stronger when pulled. Slip bonds are more conventional; they weaken and break when tugged."

In addition to Sivasankar, the researchers publishing the discovery are Sabyasachi Rakshit, an Iowa State post-doctoral research associate in physics and astronomy and an Ames Laboratory associate; Kristine Manibog and Omer Shafraz, Iowa State doctoral students in physics and astronomy and Ames Laboratory student associates; and Yunxiang Zhang, a post-doctoral research associate for the University of California, Berkeley's California Institute for Quantitative Biosciences.

The project was supported by a $308,000 grant from the American Heart Association, a $150,000 Basil O'Connor Award from the March of Dimes Foundation and Sivasankar's Iowa State startup funds.

The researchers made their discovery by taking single-molecule force measurements with an atomic force microscope. They coated the microscope tip and surface with cadherins, lowered the tip to the surface so bonds could form, pulled the tip back, held it and measured how long the bonds lasted under a range of constant pulling force.

The researchers propose that cell binding "is a dynamic process; cadherins tailor their adhesion in response to changes in the mechanical properties of their surrounding environment," according to the paper.

When you cut your finger, for example, cells filling the wound might use catch bonds that resist the pulls and forces placed on the wound. As the forces go away with healing, the cells may transition to ideal bonds and then to slip bonds.

Sivasankar said problems with cell adhesion can lead to diseases, including cancers and cardiovascular problems.

And so Sivasankar said the research team is pursuing other studies of cell-to-cell bonds: "This is the beginning of a lot to be discovered about the role of these types of interactions in healthy physiology as well as diseases like cancer."


'/>"/>

Contact: Sanjeevi Sivasankar
sivasank@iastate.edu
515-294-1220
Iowa State University
Source:Eurekalert  

Related biology news :

1. Iowa State, Ames Lab researchers study the structure of drug resistance in tuberculosis
2. Iowa State, Ames Lab researchers invent new tool to study single biological molecules
3. Researchers use blood testing to predict level of enzymes that facilitate disease progression
4. Researchers identify genetic basis of cardiac, craniofacial birth defects
5. Duke researchers engineer cartilage from pluripotent stem cells
6. NIH researchers identify novel genes that may drive rare, aggressive form of uterine cancer
7. Researchers decipher the mecanism of membrane fission
8. SDSU researchers to study Chinas national treasure
9. Exercise boosts satisfaction with life, researchers find
10. UC Davis researchers develop new drug delivery system for bladder cancer using nanoparticles
11. Far from random, evolution follows a predictable genetic pattern, Princeton researchers find
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Iowa State, Ames Lab researchers find 3 unique cell-to-cell bonds
(Date:4/11/2017)... Florida , April 11, 2017 ... a security technology company, announces the appointment of independent Directors ... Bendheim to its Board of Directors, furthering the company,s ... ... of NXT-ID, we look forward to their guidance and benefiting ...
(Date:4/4/2017)... --  EyeLock LLC , a leader of iris-based identity ... and Trademark Office (USPTO) has issued U.S. Patent No. ... iris image with a face image acquired in sequence ... th issued patent. "The issuance ... multi-modal biometric capabilities that have recently come to market ...
(Date:3/29/2017)...  higi, the health IT company that operates the ... , today announced a Series B investment from ... The new investment and acquisition accelerates higi,s strategy to ... population health activities through the collection and workflow integration ... collects and secures data today on behalf of over ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... ... 12, 2017 , ... They call it the “hairy ball.” ... depiction of a system of linkages and connections so complex and dense that ... computer science at Worcester Polytechnic Institute (WPI) and director of the university’s bioinformatics ...
(Date:10/12/2017)... ... ... AMRI, a global contract research, development and manufacturing organization ... quality of life, will now be offering its impurity solutions as a stand-alone ... for all new drug products, including the finalization of ICH M7 earlier this ...
(Date:10/11/2017)... (PRWEB) , ... October 11, 2017 , ... ComplianceOnline’s Medical ... place on 7th and 8th June 2018 in San Francisco, CA. The Summit brings ... well as several distinguished CEOs, board directors and government officials from around the world ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study published in ... and fresh in vitro fertilization (IVF) transfer cycles. The multi-center matched ... , After comparing the results from the fresh and frozen transfer cohorts, the ...
Breaking Biology Technology: