Navigation Links
Iowa State, Ames Lab chemists aid study of mutated plants that may be better for biofuels
Date:2/28/2012

AMES, Iowa Genetic mutations to cellulose in plants could improve the conversion of cellulosic biomass into biofuels, according to a research team that included two Iowa State University chemists.

The team recently published its findings in the online early edition of the Proceedings of the National Academy of Sciences. Mei Hong, an Iowa State professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory, and Tuo Wang, an Iowa State graduate student in chemistry, contributed their expertise in solid-state nuclear magnetic resonance spectroscopy to the study.

The study was led by Seth DeBolt, an associate professor of horticulture at the University of Kentucky in Lexington. Chris Somerville, the Philomathia Professor of Alternative Energy and director of the Energy Biosciences Institute at the University of California, Berkeley, is also a contributing author. The research project was supported by grants from the National Science Foundation and the U.S. Department of Energy.

Researchers studied Arabidopsis thaliana, a common model plant in research studies, and its cellulose synthase membrane complex that produces the microfibrils of cellulose that surround all plant cells and form the basic structure of plant cell walls.

These ribbons of cellulose are made of crystallized sugars. The crystal structure makes it difficult for enzymes to break down the cellulose to the sugars that can be fermented into alcohol for biofuels. And so DeBolt assembled a research team to see if genetic mutations in the plant membrane complex could produce what the researchers have called "wounded" cellulose that's not as crystalline and therefore easier to break down into sugar.

Hong, who had done previous studies of plant cell walls, used her lab's solid-state nuclear magnetic resonance technology to study the cell walls created by the mutated system. The goals were to collect as much information as possible about the molecular structure of the cell walls to see if mutations to the plants resulted in changes to the cellulose.

"We found that the crystalline cellulose content had decreased in the mutant cell walls," Hong said. "We can quantify the degree of change, and be very specific about the type of change."

The cellulose microfibrils in the mutant cell walls, for example, were thinner than those found in normal plants, Hong said. The studies also found an additional type of cellulose with an intermediate degree of crystal structure.

Hong said those findings suggest the genetic mutations did create differences in cellulose production and formation.

The study also reports the cellulose produced by the mutated plant could be more efficiently processed into the sugars necessary for biofuel production.

"What this work suggests, in very broad terms, is that it is possible to modify cellulose structure by genetic methods, so that potentially one can more easily extract cellulose from plants as energy sources," Hong said.

The research team's paper said developing techniques to modify the structure of plant cellulose in crops for better and easier conversion to fermentable sugars "could be transformative in a bio-based economy."


'/>"/>
Contact: Mei Hong
mhong@iastate.edu
515-294-3521
Iowa State University
Source:Eurekalert  

Related biology news :

1. New Report Just Published: World Solid-State, Fiber, Gas and Dye Lasers Market Report
2. Iowa State, Ames Lab chemists discover how antiviral drugs bind to and block flu virus
3. Discovery at JGH opens door to new treatments for prostate, brain and skin cancers
4. Iowa State, Ames Lab researchers identify structure that allows bacteria to resist drugs
5. Montana State, partners in 6 states consider converting invasive plants to fuel
6. Iowa State, USDA researchers discover eye test for neurological diseases in livestock
7. Iowa State, Ames Lab researcher develops new way to study single biological molecules
8. AAAS honors Iowa State, Ames Lab researchers for distinguished science
9. Iowa State, Ames Lab researchers describe the pump that bacteria use to resist drugs
10. Iowa State, Ames Lab researcher hunts for green catalysts
11. Missouri elk are being reintroduced in the wrong part of the state, MU anthropologist says
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Iowa State, Ames Lab chemists aid study of mutated plants that may be better for biofuels
(Date:12/6/2016)... 2016 Valencell , the leading innovator ... seen a third consecutive year of triple digit growth ... 2016 with a 360 percent increase in companies who ... was driven by sales of its wrist and ear ... its technology for hearables for fitness and healthcare applications. ...
(Date:12/2/2016)... Texas , Dec. 1, 2016   ... today announced BioLock , an electrocardiogram (ECG) ... health monitoring, a key IoT asset. The smart ... into a vehicle,s steering wheel and mobile devices ... simple touch. As vehicle technology advances, ...
(Date:11/29/2016)... Nov. 29, 2016   Neurotechnology , ... object recognition technologies, today released FingerCell 3.0, ... recognition solutions that run on low-power, low-memory ... using less than 128KB of memory, enabling ... that have limited on-board resources, such as: ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... ... for their exceptionally efficient human mesenchymal stem/stromal cell (hMSC) expansion medium. ... media products engineered to radically streamline culture processes, minimize processing time, significantly ...
(Date:12/8/2016)... , Dec. 8, 2016  Soligenix, Inc. ... biopharmaceutical company focused on developing and commercializing products ... unmet medical need, announced today the long-term follow-up ... SGX942 (dusquetide), a first-in-class Innate Defense Regulator (IDR), ... head and neck cancer patients undergoing chemoradiation therapy ...
(Date:12/8/2016)... 2016 Savannah River Remediation LLC group ... NewTechBio,s NT-MAX Lake & Pond Sludge and ... in conjunction with Hexa Armor/ Rhombo cover manufactured ... Pollutant Discharge Elimination System requirements. The ... history of elevated pH levels, above 8.5, especially ...
(Date:12/8/2016)...   Biocept, Inc . (NASDAQ: ... actionable liquid biopsy tests to improve the management ... its Target Selectorâ„¢ Circulating Tumor Cell platform demonstrated ... of actionable biomarkers in patients with metastatic breast ... Cannon Research Institute (SCRI), the research arm of ...
Breaking Biology Technology: