Navigation Links
Ion selectivity in neuronal signaling channels evolved twice in animals
Date:7/26/2012

This press release is available in German.

Excitation of neurons depends on the selected influx of certain ions, namely sodium, calcium and potassium through specific channels. Obviously, these channels were crucial for the evolution of nervous systems in animals. How such channels could have evolved their selectivity has been a puzzle until now. Yehu Moran and Ulrich Technau from the University of Vienna together with Scientists from Tel Aviv University and the Woods Hole Oceanographic Institution (USA) have now revealed that voltage-gated sodium channels, which are responsible for neuronal signaling in the nerves of animals, evolved twice in higher and lower animals. These results were published in "Cell Reports".

The opening and closing of ion channels enable flow of ions that constitute the electrical signaling in all nervous systems. Every thought we have or every move we make is the result of the highly accurate opening and closing of numerous ion channels. Whereas the channels of most lower animals and their unicellular relatives cannot discern between sodium and calcium ions, those of higher animals are highly specific for sodium, a characteristic that is important for fast and accurate signaling in complex nervous system.

Surprising results in sea anemones and jellyfish

However, the researchers found that a group of basal animals with simple nerve nets including sea anemones and jellyfish also possess voltage-gated sodium channels, which differ from those found in higher animals, yet show the same selectivity for sodium. Since cnidarians separated from the rest of the animals more than 600 million years ago, these findings suggest that the channels of both cnidarians and higher animals originated independently twice, from ancient non-selective channels which also transmit calcium.

Since many other processes of internal cell signaling are highly dependent on calcium ions, the use of non-selective ion channels in neurons would accidently trigger various signaling systems inside the cells and will cause damage. The evolution of selectivity for sodium ions is therefore considered as an important step in the evolution of nervous systems with fast transmission. This study shows that different parts of the channel changed in a convergent manner during the evolution of cnidarians and higher animals in order to perform the same task, namely to select for sodium ions.

This demonstrates that important components for the functional nervous systems evolved twice in basal and higher animals, which suggests that more complex nervous systems that rely on such ion-selective channels could have also evolved twice independently.


'/>"/>
Contact: Ulrich Technau
ulrich.technau@univie.ac.at
43-142-775-7000
University of Vienna
Source:Eurekalert  

Related biology news :

1. Researchers have identified a gene with a key role in neuronal survival
2. Scientists tie DNA repair to key cell signaling network
3. To drive infections, a hijacking virus mimics a cells signaling system
4. Out of the mouths of primates, facial mechanics of human speech may have evolved
5. Excessive worrying may have co-evolved with intelligence
6. Leading evolutionary scientist to discuss how genome of bacteria has evolved
7. Environmental concerns increasing infectious disease in amphibians, other animals
8. Deep sea animals stowaway on submarines and reach new territory
9. Elephant seal tracking reveals hidden lives of deep-diving animals
10. NOAA discovers way to detect low-level exposure to seafood toxin in marine animals
11. Study suggests why some animals live longer
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Ion selectivity in neuronal signaling channels evolved twice in animals
(Date:11/29/2016)... , Nov. 29, 2016 BioDirection, a ... point-of-care products for the objective detection of concussion and ... company has successfully completed a meeting with the U.S. ... Tbit™ blood test Pre-Submission Package. During the meeting company ... system as a precursor to commencement of a planned ...
(Date:11/28/2016)... "The biometric system market ... The biometric system market is in the growth stage ... future. The biometric system market is expected to be ... CAGR of 16.79% between 2016 and 2022. Government initiative ... in smartphones, rising use of biometric technology in financial ...
(Date:11/22/2016)... MINNETONKA, Minn. , Nov. 22, 2016   ... that supports the entire spectrum of clinical research, is ... by Medical LiveWire Healthcare and Life Sciences Awards ... This award caps off an unprecedented year of recognition ... clinical trials for over 15 years. iMedNet ...
Breaking Biology News(10 mins):
(Date:12/2/2016)... ... December 01, 2016 , ... Aerocom Healthcare ( http://www.aerocomhealthcare.com ... will present its chain-of-custody solution for tracking and securing medications at booth 676 ... 4-8, 2016. , Aerocom has a proven solution for tracking medications via its ...
(Date:12/2/2016)... PRUSSIA, PA (PRWEB) , ... December 01, 2016 , ... ... is through industry-wide collaboration, standardization and a beautiful technology experience. All three tenets were ... more than 100 clinical trial leaders from over 40 sponsor, CRO and site organizations ...
(Date:12/2/2016)... Boston, MA (PRWEB) , ... December 02, 2016 , ... ... of Light Event on December 3rd, 2016. The event, which is held on ... NTI’s work with helping Americans with Disabilities back into the workplace. Suitable Technologies is ...
(Date:12/2/2016)... a world leader in rapid infectious disease tests, introduced the Company,s newest product, the ... (Photo: http://photos.prnewswire.com/prnh/20161201/444905 ) Continue Reading ... ... , , bioLytical was invited by the ... INSTI HIV Self Test to 350 pharmacy representatives in Nairobi ...
Breaking Biology Technology: