Navigation Links
Intracellular express -- why transport protein molecules have brakes
Date:5/21/2010

Every single one of our cells contains so-called motor proteins that transport important substances from one location to another. However, very little is known about how exactly these transport processes occur. Biophysicists at the Technische Universitaet Muenchen (TUM) and Ludwig Maximilians Universitaet Muenchen (LMU) have now succeeded in explaining fundamental functions of a particularly interesting motor protein. They report their findings in the current issue of the Proceedings of the National Academy of Sciences (USA).

Motorized transport proteins are one of the keys to the development of higher organisms. It is they that enable the cell to transport important substances directly and quickly to a specific location in the cell. As bacteria cannot do this, they are not able to form larger cells or even large organisms with many cells. Particularly important are fast transport proteins in the primary cilia, the cell's antennas, with which they channel information from the surroundings into the cell.

Like trucks on a highway, kinesins transport cellular cargoes to their destinations. They do this by crawling along protein fibers, so-called microtubules, which extend through the entire cell. Kinesins consist of two long intertwined protein chains. At one end of every protein there is a head that can attach itself to certain structures on the surface of the microtubules; the freight is attached to the other end.

Very special kinesins are at work in the cilia of the Caenorhabditis elegans nematode: They consist of two different protein chains and are therefore especially suitable for investigating the transport mechanisms. As freight, the researchers attached small plastic beads to the ends of these motor proteins. They can manipulate these beads with "optical tweezers," a specially formed laser beam.

One end of the protein molecule was held with the optical tweezers; the other was able to walk on microtubules. This enabled the scientists to measure the force with which the motor protein can pull. In this experimental setup, the kinesin-2 with its freight walks as far as 1,500 nanometers in tiny steps measuring a mere eight nanometers. "If we didn't hold it back, it might still go a lot further," says Zeynep kten from the Institute for Cell Biology at LMU.

The kinesin-2 investigated consists of one KLP11 and one KLP20 protein. By exchanging the heads of the chains, the researchers were able to show that KLP11 is a non-processive motor protein. It only becomes a transport protein in combination with KLP20. In further experiments they were able to explain why nature chooses this unusual combination: KLP20 proteins have no "brakes." A transport protein made of two KLP20 units would be permanently on the go and would waste energy. The KLP11, in contrast, has a mechanism called autoinhibition, which makes sure that the transport protein is at a standstill if no freight is attached.

"Our results show that a molecular motor must take on a large number of functions over and above simple transport, if it wants to operate successfully in a cell," says Professor Matthias Rief from the Physics Department of the TU Muenchen. It must be possible to switch the motor on and off, and it must be able to accept a load needed at a specific location and hand it over at the destination. "It is impressive how nature manages to combine all of these functions in one molecule," Rief says. "In this respect it is still far superior to all the efforts of modern nanotechnology and serves as a great example to us all."


'/>"/>

Contact: Patrick Regan
regan@zv.tum.de
49-892-891-0515
Technische Universitaet Muenchen
Source:Eurekalert

Related biology news :

1. Tel Aviv University President Co-authors Important Paper Unraveling the Effect of Spatial Organization on Intracellular Chemistry
2. Tolerance to inhalants may be caused by changes in gene expression
3. Unique pattern of gene expression can indicate acetaminophen overdose
4. Powerful integration of lipid metabolic profiling with gene expression analysis
5. Mars Express -- 5000 orbits and counting
6. Nucleonics initiates hepatitis B clinical trial with expressed interfering RNA therapeutic
7. Venus Express reboots the search for active volcanoes on Venus
8. Gene-environment interaction in yeast gene expression
9. Scientists discover small RNAs that regulate gene expression and protect the genome
10. Predicting acute GVHD by gene expression could improve liver stem cell transplant outcomes
11. Conaway Lab identifies novel mechanism for regulation of gene expression
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/15/2016)...  A new partnership announced today will help ... in a fraction of the time it takes ... life insurance policies to consumers without requiring inconvenient ... Diagnostics, rapid testing (A1C, Cotinine and HIV) and ... weight, pulse, BMI, and activity data) available at ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
Breaking Biology News(10 mins):
(Date:5/3/2016)... ... May 03, 2016 , ... ... NYC , the sensor and data driven conferences, will take place on June 7-8, 2016, at ... UnitedHealth's Vidya Raman-Tangella on incorporating technology -- including AR/VR, machine learning, apps, robotics ...
(Date:5/3/2016)... ... May 03, 2016 , ... ... and IVF laboratories. A contingency of reproductive endocrinologists, including Dr. George Hill ... experiencing infertility and to help them build families. , Ovation Fertility is a ...
(Date:5/2/2016)... ... May 02, 2016 , ... ... the pre-launch success of their revolutionary, veterinarian-designed product for indoor cats. The NoBowl ... and play with their food the way nature intended. NoBowls make cats happy ...
(Date:4/29/2016)... , April 29, 2016 ... by Transparency Market Research "Separation Systems for Commercial ... Growth, Trends, and Forecast 2015 - 2023", the ... at US$ 10,665.5 Mn in 2014 and is ... from 2015 to 2023 to reach US$ 19,227.8 ...
Breaking Biology Technology: