Navigation Links
International research team seeks to unravel flatworm regeneration
Date:7/21/2009

Planarian flatworms are only a few millimeters up to a few centimeters in length, live in freshwater and are the object of intense research, because they possess the extraordinary ability to regenerate lost tissue with the help of their stem cells (neoblasts) and even grow an entirely new worm out of minute amputated body parts. Now researchers from the Max Delbrck Center in Berlin, Germany together with researchers in the US and Canada present the first comprehensive catalogue of small RNAs of planaria, elements that regulate gene expression. They also have identified small RNAs which may play a role in regeneration and stem cell function, Nikolaus Rajewsky from the MDC points out (PNAS, Early Edition)*.

Research suggests that the regeneration of the flatworm involves hundreds of genes. But how are these genes regulated? With the latest technologies researchers search for molecules which regulate genes, such as the small RNAs and especially microRNAs (miRNAs).

Of the hundreds of known planarian species the team of researchers from Germany, the US and Canada chose Schmidtea mediterranea. Full 30 percent of the cells of this species consists of stem cells, making it a unique model system to investigate the function of stem cells.

Many planaria genes resemble those of humans, and also many genes specifically linked to planarian stem cell biology and regeneration are conserved in humans. Understanding planarian regeneration therefore promises to yield important insights into human regeneration and stem cell biology, the researchers are convinced.

The researchers looked for small RNAs in stem cells as well as in the whole planarian organism. They discovered 60 new microRNA genes and could demonstrate that ten microRNAs are specifically linked to stem cell biology and may therefore play a role in regeneration. A few of these microRNAs also exist in humans.

Furthermore, the researchers discovered millions of piRNAs. This is a group of just recently discovered small RNA molecules which are important for the stability of the genome. The researchers could demonstrate that piRNAs are highly represented in the planarian stem cells and likely function in a similar way as in mammals.

Because stem cells are potentially immortal, they need to strictly control their genome integrity during transmission to future generations, and particulary to protect it against the uncontrolled propagation of mobile genetic elements, transposons. PiRNAs have been shown to selectively silence transposons in the fly and mouse genomes. Due to their analysis the researchers assume that piRNAs have a similar function in the planarian stem cells. Further studies are needed to investigate this.


'/>"/>

Contact: Barbara Bachtler
bachtler@mdc-berlin.de
49-309-406-3896
Helmholtz Association of German Research Centres
Source:Eurekalert  

Related biology news :

1. Fujitsu PalmSecure Certified Under International Common Criteria Evaluation Assurance Level 2
2. Journal of Vascular and Interventional Radiology increases impact, international reach
3. International team of students and scientists on month-long field course in Siberian Arctic
4. ESHRE launches international study of polar body screening
5. International collaboration by scientists culminates in novel ion channels database
6. Susan E. Gardiner receives ASHS Outstanding International Horticulturist Award
7. SRI International announces findings from new upper atmospheric radar system for scientific research
8. International Serious Adverse Events Consortium announces initial study results in its global research collaboration to identify genetic markers related to drug induced liver injury
9. World-class innovation through international cooperation
10. International team tracks clues to HIV
11. SRI International to screen drugs that fight 2009 H1N1 influenza A
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
International research team seeks to unravel flatworm regeneration
(Date:3/15/2016)... March 15, 2016 --> ... by Transparency Market Research "Digital Door Lock Systems Market - ... - 2023," the global digital door lock systems market in ... 2014 and is forecast to grow at a CAGR of ... small and medium enterprises (MSMEs) across the world and high ...
(Date:3/11/2016)... http://www.apimages.com ) - --> http://www.apimages.com ) - ... ( http://www.apimages.com ) - Germany . The ... refugee identity cards. DERMALOG will be unveiling this device, and a ... next week.   --> Germany . ... new refugee identity cards. DERMALOG will be unveiling this device, and ...
(Date:3/9/2016)... NEW YORK , March 9, 2016 ... current and future states of the RNA Sequencing (RNA ... in segments such as instruments, tools and reagents, data ... Analyze various segments of the RNA-Sequencing market such ... RNA-Sequencing services Identify the main factors affecting each segment ...
Breaking Biology News(10 mins):
(Date:4/29/2016)... ... April 29, 2016 , ... Intelligent Implant Systems announced today that the two-level ... sale in the United States. These components expand the capabilities of the system ... sales beginning in October of 2015, the company has seen significant sales growth in ...
(Date:4/28/2016)... Rocky Hill, Conn. (PRWEB) , ... April 28, ... ... source of financing and ongoing support for Connecticut's innovative, growing companies, today announced ... early-stage digital health and financial technology (fintech) companies. , “VentureClash looks ...
(Date:4/27/2016)... ... April 27, 2016 , ... Cambridge Semantics, the ... technology, today announced that it has been named to The Silicon Review’s “20 Fastest ... and other markets, Cambridge Semantics serves the needs of end users facing some of ...
(Date:4/27/2016)... April 27, 2016 NanoStruck ... (OTCPink: NSKQB) ( Frankfurt : 8NSK) ... Pressemitteilung vom 13. August 2015 die Genehmigung von ... um zusätzliche 200.000.000 Einheiten auf 400.000.000 Einheiten zu ... bringen. Davon wurden 157.900.000 Einheiten mit dem ersten ...
Breaking Biology Technology: