Navigation Links
International consortium discovers seven new genomic regions associated with AMD
Date:3/3/2013

(Boston) An international group of researchers has discovered seven new regions of the human genomecalled locithat are associated with increased risk of age-related macular degeneration (AMD), a leading cause of blindness. The AMD Gene Consortium, a network of international investigators representing 18 research groups, also confirmed 12 loci identified in previous studies. The study, which is published online in Nature Genetics and represents the most comprehensive genome-wide analysis of genetic variations associated with AMD, was supported by the National Eye Institute (NEI), a part of the National Institutes of Health.

Lindsay A. Farrer, PhD, chief of the biomedical genetics section and professor at Boston University Schools of Medicine (BUSM) and Public Health (BUSPH), is co-lead author of the study.

"This compelling analysis by the AMD Gene Consortium demonstrates the enormous value of effective collaboration," said NEI Director Paul A. Sieving, MD, PhD. "Combining data from multiple studies, this international effort provides insight into the molecular basis of AMD, which will help researchers search for causes of the disease and will inform future development of new diagnostic and treatment strategies."

Since the 2005 discovery that certain variations in the gene for complement factor Ha component of the immune systemare associated with major risk for AMD, research groups around the world have conducted genome-wide association studies to identify other loci that affect AMD risk. These studies were made possible by tools developed through the Human Genome Project, which mapped human genes, and related projects, such the International HapMap Project, which identified common patterns of genetic variation within the human genome.

The AMD Gene Consortium combined data from 18 research groups to increase the power of prior analyses. The current analysis identified seven new loci near genes. As with the previously discovered 12 loci, these seven loci are scattered throughout the genome on many different chromosomes.

"A large number of samples was needed to detect additional genetic variants that have small but significant influences on a person's disease risk," said Hemin Chin, PhD, NEI associate director for ophthalmic genetics, who assembled the consortium and helped coordinate the study. "By cataloging genetic variations associated with AMD, scientists are better equipped to target corresponding biological pathways and study how they might interact and change with age or other factors, such as smoking."

The consortium's analysis included data from more than 17,100 people with the most advanced and severe forms of AMD, which were compared to data from more than 60,000 people without AMD. The 19 loci that were found to be associated with AMD implicate a variety of biological functions, including regulation of the immune system, maintenance of cellular structure, growth and permeability of blood vessels, lipid metabolism and atherosclerosis.

As with other common diseases, such as type 2 diabetes, an individual person's risk for getting AMD is likely determined not by one but many genes. Further comprehensive DNA analysis of the areas around the 19 loci identified by the AMD Gene Consortium could turn up undiscovered rare genetic variants with a disproportionately large effect on AMD risk. Discovery of such genes could greatly advance scientists' understanding of AMD pathogenesis and their quest for more effective treatments.

AMD affects the macula, a region of the retina responsible for central vision. The retina is the layer of light-sensitive tissue in the back of the eye that houses rod and cone photoreceptor cells. Compared with the rest of the retina, the macula is especially dense with cone photoreceptors and is what humans rely on for tasks that require sharp vision, such as reading, driving and recognizing faces. As AMD progresses, such tasks become more difficult and eventually impossible. Some kinds of AMD are treatable if detected early, but no cure exists. An estimated 2 million Americans have AMD.

Scientists have shown that age, diet, and smoking influence a person's risk of developing AMD. Genetics also plays a strong role. AMD often runs in families and is more common among certain ethnicities, such as Asians and people of European descent. AMD typically presents later in life, but identifying genetic variants associated with the disease, all of which are present at birth, could help future studies determine how to stop the disease from progressing and even from occurring.

"Genetic research allows us to piece together disease pathways that may have their starting point much earlier in life," said Farrer. "These newly identified genes, individually and collectively, provide novel clues and targets to evaluate for their potential therapeutic benefits."


'/>"/>

Contact: Jenny Eriksen
jenny.eriksen@bmc.org
617-638-6841
Boston University Medical Center
Source:Eurekalert

Related biology news :

1. 11th International Congress on Targeted Anticancer Therapies
2. WPI Biomedical Technology in final 4 of international business plan contest
3. Biologists lead international team to track Arctic response to climate change
4. International space station plays host to innovative infectious disease research
5. Maris presentation tops ANZFSS International Symposium
6. International biodiversity data symposium to mark the kickoff of the EU BON project
7. AERA announces publication of the International Handbook of Research on Environmental Education
8. Conference Programme Committees selected for the 20th International AIDS Conference (AIDS 2014)
9. Winners of 10th annual International Science & Technology Visualization Challenge announced
10. The 2013 International Conference on Genomics in Europe will take place in Ghent, Belgium
11. Flashback Data Remains Only Non-Governmental Digital Forensics Lab with ASCLD/LAB International Accreditation
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/15/2016)... 2016  Synthetic Biologics, Inc. (NYSE MKT: SYN), ... the gut microbiome, today announced the pricing of ... its common stock and warrants to purchase 50,000,000 ... to the public of $1.00 per share and ... the offering, excluding the proceeds, if any from ...
(Date:11/14/2016)... , Nov. 14, 2016  Based on ... market, Frost & Sullivan recognizes FST Biometrics ... Award for Visionary Innovation Leadership. FST Biometrics ... biometric identification market by pioneering In Motion ... for instant, seamless, and non-invasive verification. This ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... ... December 08, 2016 , ... ... cells — optogenetics — is key to exciting advances in the study and ... patterned light projected via free-space optics stimulates small, transparent organisms and excites neurons ...
(Date:12/8/2016)... ... December 08, 2016 , ... KBioBox llc announced ... client demand KbioBox developed a sophisticated “3 click” gene dditing off target analysis ... KBioBox’s new website, https://www.kbiobox.com/ and powered by the company’s proprietary ...
(Date:12/8/2016)... 8, 2016 Soligenix, Inc. (OTCQB: SNGX) (Soligenix ... developing and commercializing products to treat rare diseases where ... it will be hosting an Investor Webcast Event Friday, ... origins of innate defense regulators (IDRs) as a new ... mucositis and the recently announced and published Phase 2 ...
(Date:12/8/2016)...   Biocept, Inc . (NASDAQ: ... actionable liquid biopsy tests to improve the management ... its Target Selector™ Circulating Tumor Cell platform demonstrated ... of actionable biomarkers in patients with metastatic breast ... Cannon Research Institute (SCRI), the research arm of ...
Breaking Biology Technology: