Navigation Links
Insulin-releasing switch discovered
Date:3/15/2011

Johns Hopkins researchers believe they have uncovered the molecular switch for the secretion of insulin the hormone that regulates blood sugar providing for the first time an explanation of this process. In a report published online March 1 in Cell Metabolism, the researchers say the work solves a longtime mystery and may lead to better treatments for type 2 diabetes, the most common form of the disease.

"Before our discovery, the mechanism behind how exactly the insulin-producing beta cells in the islet of Langerhans of the pancreas fail in type 2 diabetes was incompletely understood, making it difficult to design new and better therapies, says Mehboob Hussain, M.D., associate professor of pediatrics, medicine and biological chemistry. "Our research cracks open a decades-long mystery."

After a meal, the pancreas produces insulin to move glucose from the blood into cells for fuel. People with type 2 diabetes either don't secrete enough insulin or their cells are resistant to its effects.

In a study designed to figure out more precisely how the pancreas releases insulin, Hussain's group looked at how other cells in the body release chemicals. One particular protein, Snapin, found in nerve cells, caught their eye because it's used by nerve cells to release chemicals necessary for cell communication. Snapin also is found in the insulin-secreting pancreatic beta cells.

To test the role of Snapin, researchers engineered a change to the Snapin gene in mice to keep Snapin permanently "on" in the pancreas. Researchers removed the pancreas cells and grew them in a dish for a day, then added glucose to the cells and took samples to measure how much insulin was released.

When the scientists compared that measurement to what was released by pancreas cells in normal mice, they found that normal mice released about 2.8 billionths of a gram of insulin per cell, whereas the cells from "Snapin-on" mice released 7.3 billionths of a gram of insulin per cell about three times the normal amount.

"We were surprised to find that the Snapin-on mice didn't have more or bigger pancreas cells, they just made more insulin naturally," says Hussain. "This means all our insulin-secreting cells have this amazing reserve of insulin that we didn't really know existed and a switch that controls it."

To see if permanently turning off Snapin would reduce insulin release and further demonstrate that Snapin controls the process, the researchers first grew normal mouse pancreas cells in a dish, and treated them with a chemical that stopped them from making the Snapin protein. They again bathed the cells in glucose and measured how much insulin was released by the cells. Normal cells released 5.8 billionths of a gram of insulin, whereas cells with no Snapin only released 1.1 billionths of a gram of insulin about 80 percent less.

"These results convinced us that Snapin is indeed the switch that releases insulin from the pancreas," says Hussain.

Normally, according to Hussain, when we ingest glucose, the pancreatic beta cells release an initial burst of insulin almost immediately, then gradually release more insulin about 15 minutes later. However, people with type 2 diabetes and mice engineered to react metabolically like people with type 2 diabetes don't release this initial spurt of insulin when fed glucose, but still have the later gradual insulin release.

"We knew how important the first burst of insulin is for controlling our blood sugar, but we did not know what really went wrong in our beta cells in people with type 2 diabetes," says Hussain. "We have drugs that restore the first burst of insulin and yet we did not completely understand how they work."

Hussain then questioned whether Snapin could be used to fix the defects in cells from a diabetic animal.

Since the cells with Snapin on made too much insulin, researchers wanted to see if they could use this to restore these mice's ability to secrete the initial burst of insulin. After growing pancreatic beta cells from type 2 diabetes mice in a dish and engineering them to make the Snapin-on protein, the researchers fed the cells glucose and found that they did indeed regain the ability to release that initial insulin burst.

"While keeping Snapin on in these mouse cells corrects the problem in this animal model of type 2 diabetes, we're still a long way from knowing if the same mechanism will work in people, but this gives us an encouraging start," says Hussain.


'/>"/>

Contact: Vanessa McMains
vmcmain1@jhmi.edu
410-502-9410
Johns Hopkins Medical Institutions
Source:Eurekalert

Related biology news :

1. On...off...on...off... The circuitry of insulin-releasing cells
2. Flipping a switch on neuron activity
3. Scientists discover genetic switch that increases muscle blood supply
4. MIT-- parts of brain can switch functions
5. New lignin lite switchgrass boosts biofuel yield by more than one-third
6. Scripps Research study sheds light on RNA on/off switches
7. Scientists find the master switch for key immune cells in inflammatory diseases
8. Scripps Research scientist uncovers switch controlling protein production
9. When their tools get dull, leaf-cutters switch jobs
10. Scientists discover molecular switch that contributes to cellular aging process
11. University of Illinois researchers discover potential new virus in switchgrass
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/31/2016)... 2016   LegacyXChange, ... "Company") LegacyXChange is excited to release its ... to be launched online site for trading 100% guaranteed ... will also provide potential shareholders a sense of the ... an industry that is notorious for fraud. The video ...
(Date:3/22/2016)... PROVO and SANDY, ... Screening Ontario (NSO), which operates the highest sample volume ... testing, and Tute Genomics and UNIConnect, leaders in clinical ... today announced the launch of a project to establish ... testing panel. NSO has been contracted ...
(Date:3/15/2016)... , March 15, 2016 Yissum Research ... the technology-transfer company of the Hebrew University, announced today ... remote sensing technology of various human biological indicators. Neteera ... $2.0 million from private investors. ... on the detection of electromagnetic emissions from sweat ducts, ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... ... 04, 2016 , ... PBI-Gordon Corporation is pleased to announce Doug Obermann has ... his career at PBI-Gordon in February 1988, after finishing his masters in agronomy from ... from customer service to national product manager, to helping develop, name and launch many ...
(Date:5/3/2016)... , ... May 03, 2016 , ... ... enterprise talent development, skill-building and compliance training platform on mobile devices, today released ... Overview of Regulatory Requirements for Medical Devices. The course is essential for owners ...
(Date:5/3/2016)... ... May 03, 2016 , ... ... of Dr. Nancy Gillett to its Board of Directors. Dr. Gillett recently retired ... Corporate Executive Vice President and Chief Scientific Officer. A board-certified veterinary pathologist, Dr. ...
(Date:5/3/2016)... - And Other Rising Companies - a ... Biologics  - Biosimilar Drug Producers - Your ... Who are the most important and promising ... potentials? Discover, in our updated survey, organisations, outlooks from ... forecasting. Visiongain,s new study analyses ...
Breaking Biology Technology: