Navigation Links
Inspired by insect cuticle, Wyss Institute develops material that's tough and strong

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have developed a new material that replicates the exceptional strength, toughness, and versatility of one of nature's more extraordinary substancesinsect cuticle. Also low-cost, biodegradable, and biocompatible, the new material, called "Shrilk," could one day replace plastics in consumer products and be used safely in a variety of medical applications.

The research findings appear in the December 13 online edition of Advanced Materials. The work was conducted by Wyss Institute postdoctoral fellow, Javier G. Fernandez, Ph.D., with Wyss Institute Founding Director Donald Ingber, M.D., Ph.D. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Children's Hospital Boston and is a Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences.

Natural insect cuticle, such as that found in the rigid exoskeleton of a housefly or grasshopper, is uniquely suited to the challenge of providing protection without adding weight or bulk. As such, it can deflect external chemical and physical strains without damaging the insect's internal components, while providing structure for the insect's muscles and wings. It is so light that it doesn't inhibit flight and so thin that it allows flexibility. Also remarkable is its ability to vary its properties, from rigid along the insect's body segments and wings to elastic along its limb joints.

Insect cuticle is a composite material consisting of layers of chitin, a polysaccharide polymer, and protein organized in a laminar, plywood-like structure. Mechanical and chemical interactions between these materials provide the cuticle with its unique mechanical and chemical properties. By studying these complex interactions and recreating this unique chemistry and laminar design in the lab, Fernandez and Ingber were able to engineer a thin, clear film that has the same composition and structure as insect cuticle. The material is called Shrilk because it is composed of fibroin protein from silk and from chitin, which is commonly extracted from discarded shrimp shells.

Shrilk is similar in strength and toughness to an aluminum alloy, but it is only half the weight. It is biodegradable and can be produced at a very lost cost, since chitin is readily available as a shrimp waste product. It is also easily molded into complex shapes, such as tubes. By controlling the water content in the fabrication process, the researchers were even able to reproduce the wide variations in stiffness, from elasticity to rigidity.

These attributes could have multiple applications. As a cheap, environmentally safe alternative to plastic, Shrilk could be used to make trash bags, packaging, and diapers that degrade quickly. As an exceptionally strong, biocompatible material, it could be used to suture wounds that bear high loads, such as in hernia repair, or as a scaffold for tissue regeneration.

"When we talk about the Wyss Institute's mission to create bioinspired materials and products, Shrilk is an example of what we have in mind," said Ingber. "It has the potential to be both a solution to some of today's most critical environmental problems and a stepping stone toward significant medical advances."


Contact: Twig Mowatt
Wyss Institute for Biologically Inspired Engineering at Harvard

Related biology news :

1. A biologically inspired tape uses some of natures tricks to stick
2. Researcher inspired by life in a glass house awarded £1.3 million
3. Borrowing from brightly-colored birds: Physicists develop lasers inspired by nature
4. NJIT professor develops a biologically inspired catalyst, an active yet inert material
5. Whale-inspired ocean turbine blades
6. Lyfish-inspired pumps
7. TWIPS -- sonar inspired by dolphins
8. Researchers equip robot sub with sensory system inspired by blind fish
9. Mussel-inspired glue for fetal membrane repair
10. Lotus-plant-inspired dust-busting shield to protect space gear
11. DOE funds bio-inspired solar fuel center at Arizona State
Post Your Comments:
(Date:5/12/2016)... May 12, 2016 , a ... the overview results from the Q1 wave of its ... wave was consumers, receptivity to a program where they ... a health insurance company. "We were surprised ... says Michael LaColla , CEO of Troubadour Research, ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
(Date:4/26/2016)... 27, 2016 Research and ... Biometrics Market 2016-2020"  report to their offering.  , ... The analysts forecast the global multimodal biometrics ... during the period 2016-2020.  Multimodal biometrics ... such as the healthcare, BFSI, transportation, automotive, and ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016   Ginkgo Bioworks , a leading ... was today awarded as one of the World ... world,s most innovative companies. Ginkgo Bioworks is engineering ... real world in the nutrition, health and consumer ... with customers including Fortune 500 companies to design ...
(Date:6/24/2016)... DIEGO , June 24, 2016 ... more sensitively detects cancers susceptible to PARP inhibitors ... circulating tumor cells (CTCs). The new test has ... HRD-targeted therapeutics in multiple cancer types. ... targeting DNA damage response pathways, including PARP, ATM, ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica ... in people with peritoneal or pleural mesothelioma. Their findings are the subject of a ... , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of ...
(Date:6/23/2016)... ... June 23, 2016 , ... UAS LifeSciences, one of the ... brand, UP4™ Probiotics, into Target stores nationwide. The company, which has been manufacturing ... to its list of well-respected retailers. This list includes such fine stores as ...
Breaking Biology Technology: